Abstract:
Methods and apparatus relating to enabling augmented reality applications using eye gaze tracking are disclosed. An exemplary method according to the disclosure includes displaying an image to a user of a scene viewable by the user, receiving information indicative of an eye gaze of the user, determining an area of interest within the image based on the eye gaze information, determining an image segment based on the area of interest, initiating an object recognition process on the image segment, and displaying results of the object recognition process.
Abstract:
Systems and methods for performing localization and mapping with a mobile device are disclosed. In one embodiment, a method for performing localization and mapping with a mobile device includes identifying geometric constraints associated with a current area at which the mobile device is located, obtaining at least one image of the current area captured by at least a first camera of the mobile device, obtaining data associated with the current area via at least one of a second camera of the mobile device or a sensor of the mobile device, and performing localization and mapping for the current area by applying the geometric constraints and the data associated with the current area to the at least one image.
Abstract:
Systems, apparatus and methods for triggering a depth sensor and/or limiting bandwidth and/or maintaining privacy are presented. By limiting use of a depth sensor to times when an optical image alone is insufficient, mobile device power is saved. Furthermore, by reducing a size of an optical image to only the portion of the image needed to detect an object, bandwidth is saved and privacy is maintained by not communicating unneeded or undesired information.
Abstract:
Embodiments disclosed obtain a plurality of measurement sets from a plurality of sensors in conjunction with the capture of a sequence of exterior and interior images of a structure while traversing locations in and around the structure. Each measurement set may be associated with at least one image. An external structural envelope of the structure is determined from exterior images of the structure and the corresponding outdoor trajectory of a UE. The position and orientation of the structure and the structural envelope is determined in absolute coordinates. Further, an indoor map of the structure in absolute coordinates may be obtained based on interior images of the structure, a structural envelope in absolute coordinates, and measurements associated with the indoor trajectory of the UE during traversal of the indoor area to capture the interior images.
Abstract:
A mobile device determines a vision based pose using images captured by a camera and determines a sensor based pose using data from inertial sensors, such as accelerometers and gyroscopes. The vision based pose and sensor based pose are used separately in a visualization application, which displays separate graphics for the different poses. For example, the visualization application may be used to calibrate the inertial sensors, where the visualization application displays a graphic based on the vision based pose and a graphic based on the sensor based pose and prompts a user to move the mobile device in a specific direction with the displayed graphics to accelerate convergence of the calibration of the inertial sensors. Alternatively, the visualization application may be a motion based game or a photography application that displays separate graphics using the vision based pose and the sensor based pose.
Abstract:
An accelerometer in a mobile device is calibrated by taking multiple measurements of acceleration vectors when the mobile device is held stationary at different orientations with respect to a plane normal. A circle is calculated that fits respective tips of measured acceleration vectors in the accelerometer coordinate system. The radius of the circle and the lengths of the measured acceleration vectors are used to calculate a rotation angle for aligning the accelerometer coordinate system with the mobile device surface. A gyroscope in the mobile device is calibrated by taking multiple measurements of a rotation axis when the mobile device is rotated at different rates with respect to the rotation axis. A line is calculated that fits the measurements. The angle between the line and an axis of the gyroscope coordinate system is used to align the gyroscope coordinate system with the mobile device surface.
Abstract:
Methods and apparatus relating to enabling augmented reality applications using eye gaze tracking are disclosed. An exemplary method according to the disclosure includes displaying an image to a user of a scene viewable by the user, receiving information indicative of an eye gaze of the user, determining an area of interest within the image based on the eye gaze information, determining an image segment based on the area of interest, initiating an object recognition process on the image segment, and displaying results of the object recognition process.
Abstract:
Embodiments disclosed pertain to the use of user equipment (UE) for the generation of a 3D exterior envelope of a structure based on captured images and a measurement set associated with each captured image. In some embodiments, a sequence of exterior images of a structure is captured and a corresponding measurement set comprising Inertial Measurement Unit (IMU) measurements, wireless measurements (including Global Navigation Satellite (GNSS) measurements) and/or other non-wireless sensor measurements may be obtained concurrently. A closed-loop trajectory of the UE in global coordinates may be determined and a 3D structural envelope of the structure may be obtained based on the closed loop trajectory and feature points in a subset of images selected from the sequence of exterior images of the structure.
Abstract:
Embodiments disclosed obtain a plurality of measurement sets from a plurality of sensors in conjunction with the capture of a sequence of exterior and interior images of a structure while traversing locations in and around the structure. Each measurement set may be associated with at least one image. An external structural envelope of the structure is determined from exterior images of the structure and the corresponding outdoor trajectory of a UE. The position and orientation of the structure and the structural envelope is determined in absolute coordinates. Further, an indoor map of the structure in absolute coordinates may be obtained based on interior images of the structure, a structural envelope in absolute coordinates, and measurements associated with the indoor trajectory of the UE during traversal of the indoor area to capture the interior images.
Abstract:
A system and method is described herein for solving for surface normals of objects in the scene observed in a video stream. The system and method may include sampling the video stream to generate a set of keyframes; generating hypothesis surface normals for a set of mappoints in each of the keyframes; warping patches of corresponding mappoints in a first keyframe to the viewpoint of a second keyframe with a warping matrix computed from each of the hypothesis surface normals; scoring warping errors between each hypothesis surface normal in the two keyframes; and discarding hypothesis surface normals with high warping errors between the first and second keyframes.