Abstract:
Techniques for efficiently performing full and scaled transforms on data received via full and scaled interfaces, respectively, are described and comprise (1) performing a first transform on a block of first input values to obtain a block of first output values by scaling the block to obtain scaled input values, performing a scaled one-dimensional (1D) transform on each row of the block, and performing a scaled 1D transform on each column of the block; and (2) performing a second transform on a block of second input values to obtain a block of second output values by performing a scaled 1D transform on each row of the block, performing a scaled 1D transform on each column of the block, and scaling the block.
Abstract:
Systems, methods, and non-transitory media are provided for power-efficient image stabilization. An example method can include collecting measurements from a motion sensor, the measurements being based on movement of an image sensor while capturing frames; calculating parameters for counteracting motions in a frame, wherein first parameters are based on the measurements and second parameters are based on some of the measurements; adjusting, in a first stabilization pass of a dual-pass stabilization process, the first frame according to the second parameters; adjusting, in a second stabilization pass of the dual-pass stabilization process, the first frame according to the first parameters; based on a second frame having less motion than the first frame, enabling for the second frame a single-pass stabilization process for both a frame preview process and video record process; and adjusting, in the single stabilization pass, the second frame according to parameters for counteracting motions in the second frame.
Abstract:
Systems, methods, and computer programs are disclosed for controlling memory frequency. One method comprises a first memory client generating a compressed data buffer and compression statistics related to the compressed data buffer. The compressed data buffer and the compression statistics are stored in a memory device. Based on the stored compression statistics, a frequency or voltage setting of the memory device is adjusted for enabling a second memory client to read the compressed data buffer.
Abstract:
Techniques for efficiently performing full and scaled transforms on data received via full and scaled interfaces, respectively, are described and comprise (1) performing a first transform on a block of first input values to obtain a block of first output values by scaling the block to obtain scaled input values, performing a scaled one-dimensional (1D) transform on each row of the block, and performing a scaled 1D transform on each column of the block; and (2) performing a second transform on a block of second input values to obtain a block of second output values by performing a scaled 1D transform on each row of the block, performing a scaled 1D transform on each column of the block, and scaling the block.
Abstract:
Methods, apparatus, and computer readable media may adjust an encoding rate based on network conditions between a transmitter and a receiver. Either the transmitter, receiver, or both the transmitter and receiver may determine the encoding rate. In one aspect, a ratio of received network data to transmitted network data is determined. An encoding parameter is then determined based on the determined ratio. In one aspect, the encoding parameter may be used to adjust an encoder. In another aspect, the determined encoding parameter may be transmitted to an encoding or transmitting node. In another aspect, an amount of data buffered in a network is determined. A sustainable throughput of the network is also determined. A transmission rate is then determined based on the sustainable throughput and the amount of data buffered. An encoding parameter is then adjusted based on the transmission rate.
Abstract:
Methods, apparatus, and computer readable media determine a transmission rate. In some aspects, a method includes determining, via an electronic device, an amount of data buffered in a network, determining a sustainable throughput of the network; and determining a transmission rate based at least in part on the sustainable throughput and the amount of data buffered.
Abstract:
Methods, apparatus, and computer readable media determine a transmission rate. In some aspects, a method includes determining, via an electronic device, an amount of data buffered in a network, determining a sustainable throughput of the network; and determining a transmission rate based at least in part on the sustainable throughput and the amount of data buffered.
Abstract:
Methods, apparatus, and computer readable media may adjust an encoding rate based on network conditions between a transmitter and a receiver. Either the transmitter, receiver, or both the transmitter and receiver may determine the encoding rate. In one aspect, a ratio of received network data to transmitted network data is determined. An encoding parameter is then determined based on the determined ratio. In one aspect, the encoding parameter may be used to adjust an encoder. In another aspect, the determined encoding parameter may be transmitted to an encoding or transmitting node. In another aspect, an amount of data buffered in a network is determined. A sustainable throughput of the network is also determined. A transmission rate is then determined based on the sustainable throughput and the amount of data buffered. An encoding parameter is then adjusted based on the transmission rate.
Abstract:
Methods, apparatus, and computer readable media may adjust an encoding rate based on network conditions between a transmitter and a receiver. Either the transmitter, receiver, or both the transmitter and receiver may determine the encoding rate. In one aspect, a ratio of received network data to transmitted network data is determined. An encoding parameter is then determined based on the determined ratio. In one aspect, the encoding parameter may be used to adjust an encoder. In another aspect, the determined encoding parameter may be transmitted to an encoding or transmitting node. In another aspect, an amount of data buffered in a network is determined. A sustainable throughput of the network is also determined. A transmission rate is then determined based on the sustainable throughput and the amount of data buffered. An encoding parameter is then adjusted based on the transmission rate.
Abstract:
Methods, apparatus, and computer readable media may adjust an encoding rate based on network conditions between a transmitter and a receiver. Either the transmitter, receiver, or both the transmitter and receiver may determine the encoding rate. In one aspect, a ratio of received network data to transmitted network data is determined. An encoding parameter is then determined based on the determined ratio. In one aspect, the encoding parameter may be used to adjust an encoder. In another aspect, the determined encoding parameter may be transmitted to an encoding or transmitting node. In another aspect, an amount of data buffered in a network is determined. A sustainable throughput of the network is also determined. A transmission rate is then determined based on the sustainable throughput and the amount of data buffered. An encoding parameter is then adjusted based on the transmission rate.