Abstract:
A thin gate-oxide dual-mode PMOS transistor is disclosed that has a first mode of operation in which a switched n-well for the dual-mode PMOS transistor is biased to a high voltage. The dual-mode PMOS transistor has a second mode of operation in which the switched n-well is biased to a low voltage that is lower than the high voltage. The dual-mode PMOS transistor has a size and gate-oxide thickness each having a magnitude that cannot accommodate a permanent tie to the high voltage. An n-well voltage switching circuit is configured to bias the switched n-well to prevent voltage damage to the dual-mode PMOS transistor without the use of native transistors.
Abstract:
A fuse-based memory includes a plurality of bit lines. Each bit lines couples to a corresponding plurality of fuses. The fuses couple to ground through corresponding access transistors. The memory is configured to precharge an accessed one of the bit lines and a reference one of the bit lines using a low voltage supply. In contrast, a resulting voltage difference between the accessed bit line and the reference bit line is sensed using a sense amplifier powered by a high voltage supply, wherein a high voltage supplied by the high power supply is greater than a low voltage supplied by the low voltage supply.
Abstract:
A sense amplifier is disclosed that includes an amplifier circuit configured to receive, at an input, an input signal including an input level, the amplifier circuit configured to provide an amplified output signal including a gain with respect to the input level; and a feedback circuit coupled to receive the amplified output signal from the amplifier circuit, the feedback circuit configured to provide, at the input of the amplifier circuit, an adjusted version of the amplified output signal including a modified output magnitude based on common mode feedback.
Abstract:
A dual-mode PMOS transistor is disclosed that has a first mode of operation in which a switched n-well for the dual-mode PMOS transistor is biased to a high voltage. The dual-mode PMOS transistor has a second mode of operation in which the switched n-well is biased to a low voltage that is lower than the high voltage. The dual-mode PMOS transistor has a size and gate-oxide thickness each having a magnitude that cannot accommodate a permanent tie to the high voltage. An n-well voltage switching circuit biases the switched n-well to prevent voltage damage to the dual-mode PMOS transistor despite its relatively small size and thin gate-oxide thickness.
Abstract:
A thin gate-oxide dual-mode PMOS transistor is disclosed that has a first mode of operation in which a switched n-well for the dual-mode PMOS transistor is biased to a high voltage. The dual-mode PMOS transistor has a second mode of operation in which the switched n-well is biased to a low voltage that is lower than the high voltage. The dual-mode PMOS transistor has a size and gate-oxide thickness each having a magnitude that cannot accommodate a permanent tie to the high voltage. An n-well voltage switching circuit is configured to bias the switched n-well to prevent voltage damage to the dual-mode PMOS transistor without the use of native transistors.
Abstract:
Systems and methods for detecting power attacks related to subnormal read voltage on an integrated circuit. Upon initiating power up of the integrated circuit and prior to reading configuration information from non-volatile memory (NVM), test cells associated with the NVM are read first. The test cells share a common power supply with the NVM and output read values from the test cells are configured to deviate from values pre-programmed in the test cells when a subnormal read voltage is applied on the common power supply. Thus, by comparing the output read values with the pre-programmed values, it can be determined whether voltage of the common power supply is subnormal, wherein configuration information will be read incorrectly at a subnormal read voltage. If the voltage is subnormal, power up is aborted. Otherwise, power up is allowed to proceed by reading the configuration information from the NVM.
Abstract:
Systems and methods for detecting power attacks related to subnormal read voltage on an integrated circuit. Upon initiating power up of the integrated circuit and prior to reading configuration information from non-volatile memory (NVM), test cells associated with the NVM are read first. The test cells share a common power supply with the NVM and output read values from the test cells are configured to deviate from values pre-programmed in the test cells when a subnormal read voltage is applied on the common power supply. Thus, by comparing the output read values with the pre-programmed values, it can be determined whether voltage of the common power supply is subnormal, wherein configuration information will be read incorrectly at a subnormal read voltage. If the voltage is subnormal, power up is aborted. Otherwise, power up is allowed to proceed by reading the configuration information from the NVM.
Abstract:
A dual-mode PMOS transistor is disclosed that has a first mode of operation in which a switched n-well for the dual-mode PMOS transistor is biased to a high voltage. The dual-mode PMOS transistor has a second mode of operation in which the switched n-well is biased to a low voltage that is lower than the high voltage. The dual-mode PMOS transistor has a size and gate-oxide thickness each having a magnitude that cannot accommodate a permanent tie to the high voltage. An n-well voltage switching circuit biases the switched n-well to prevent voltage damage to the dual-mode PMOS transistor despite its relatively small size and thin gate-oxide thickness.
Abstract:
A sense amplifier is disclosed that includes an amplifier circuit configured to receive, at an input, an input signal including an input level, the amplifier circuit configured to provide an amplified output signal including a gain with respect to the input level; and a feedback circuit coupled to receive the amplified output signal from the amplifier circuit, the feedback circuit configured to provide, at the input of the amplifier circuit, an adjusted version of the amplified output signal including a modified output magnitude based on common mode feedback.
Abstract:
A dual-mode PMOS transistor is disclosed that has a first mode of operation in which a switched n-well for the dual-mode PMOS transistor is biased to a high voltage. The dual-mode PMOS transistor has a second mode of operation in which the switched n-well is biased to a low voltage that is lower than the high voltage. The dual-mode PMOS transistor has a size and gate-oxide thickness each having a magnitude that cannot accommodate a permanent tie to the high voltage. An n-well voltage switching circuit biases the switched n-well to prevent voltage damage to the dual-mode PMOS transistor despite its relatively small size and thin gate-oxide thickness.