Abstract:
A method and apparatus of processing multimedia data that includes a first section received in error are disclosed. Error distribution information corresponding to the first section may be obtained. One of a plurality of error recovery schemes may be selected based on the error distribution information for the first section. The selection may be based at least on whether a channel switch is detected. The first section may be processed based on the selected error recovery scheme.
Abstract:
Apparatus and methods of using content information for encoding multimedia data are described. A method of processing multimedia data includes obtaining content information of multimedia data, and encoding the multimedia data so as to align a data boundary with a frame boundary in a time domain, wherein said encoding is based on the content information. In another aspect, a method of processing multimedia data includes obtaining a content classification of the multimedia data, and encoding blocks in the multimedia data as intra-coded blocks or inter-coded blocks based on the content classification to increase the error resilience of the encoded multimedia data. Apparatus that can process multimedia data described in these methods are also disclosed.
Abstract:
An Encoder Assisted Frame Rate Up Conversion (EA-FRUC) system that utilizes video coding and pre-processing operations at the video encoder to exploit the FRUC processing that will occur in the decoder in order to improve compression efficiency and reconstructed video quality is disclosed. One operation of the EA-FRUC system involves determining whether to encode a frame in a sequence of frames of a video content by determining a spatial activity in a frame of the sequence of frames; determining a temporal activity in the frame; determining a spatio-temporal activity in the frame based on the determined spatial activity and the determined temporal activity; determining a level of a redundancy in the source frame based on at least one of the determined spatial activity, the determined temporal activity, and the determined spatio-temporal activity; and, encoding the non-redundant information in the frame if the determined redundancy is within predetermined thresholds.
Abstract:
A method and apparatus of processing multimedia data comprising a first section received in error are disclosed. The method comprises obtaining error distribution information corresponding to the first section. The method further comprises applying one of a plurality of error recovery schemes to the first section of the multimedia data based on the error distribution information.
Abstract:
An Encoder Assisted Frame Rate Up Conversion (EA-FRUC) system that utilizes video coding and pre-processing operations at the video encoder to exploit the FRUC processing that will occur in the decoder in order to improve compression efficiency and reconstructed video quality is disclosed. One operation of the EA-FRUC system involves determining whether to encode a frame in a sequence of frames of a video content by determining a spatial activity in a frame of the sequence of frames; determining a temporal activity in the frame; determining a spatio-temporal activity in the frame based on the determined spatial activity and the determined temporal activity; determining a level of a redundancy in the source frame based on at least one of the determined spatial activity, the determined temporal activity, and the determined spatio-temporal activity; and, encoding the non-redundant information in the frame if the determined redundancy is within predetermined thresholds.
Abstract:
Apparatus and methods of using content information for encoding multimedia data are described. A method of processing multimedia data includes obtaining content information of multimedia data, and encoding the multimedia data so as to align a data boundary with a frame boundary in a time domain, wherein said encoding is based on the content information. In another aspect, a method of processing multimedia data includes obtaining a content classification of the multimedia data, and encoding blocks in the multimedia data as intra-coded blocks or inter-coded blocks based on the content classification to increase the error resilience of the encoded multimedia data. Apparatus that can process multimedia data described in these methods are also disclosed.