Abstract:
According to example embodiments, a method for wireless communications by a user equipment (UE) is included. The method generally includes performing channel estimation at a plurality of frequency locations based on reference signals (RS) transmitted from at least one transmission point, computing at least one channel feedback metric for each frequency location, and transmitting the channel feedback metrics to the transmission point. According to certain aspects, a method for wireless communications by a base station (BS) is provided. The BS may receive channel feedback metrics from a UE, calculated at a plurality of frequency locations based on RSs transmitted from the BS. The BS may perform interpolation to determine values for channel feedback metrics for frequency locations between frequency locations of the received channel feedback metrics.
Abstract:
A method of wireless communication is presented. The method includes signaling a first number of channel state information-reference signal (CSI-RS) ports corresponding to resource elements (REs) and a second number of virtual antenna ports, the second number being less than or equal to the first number. The method also includes transmitting CSI-RS on each virtual antenna port, the CSI-RS mapped to at least a portion of the REs.
Abstract:
Methods, systems, and devices are described for identifying channel state information reference signals (CSI-RS) from a non-serving cell in a wireless communications network. A subset of virtual cell identity (VCID) candidates may be identified, and one or more CSI-RS locations for one or more CSI-RS in a received signal from a non-serving cell may be determined The CSI-RS locations may be determined based on periodicity properties of CSI-RS transmissions of the subset of VCID candidates. The one or more determined locations in the received signal may be used to identify the one or more CSI-RS in the received signal through searching the locations for all available VCIDs in a set of VCIDs.
Abstract:
Improvements to signaling procedures for use in physical random access channel (PRACH)-based proximity detection are disclosed. Signaling and signaling processes from a serving base station may trigger a more efficient and reliable transmission of PRACH from related user equipment (UE). At the dynamic power nodes (DPNs) monitoring for such PRACH-based proximity, features are disclosed which establish neighbor lists for more efficient management of detection and proximity activation.
Abstract:
Rank indicator and channel quality indicator (CQI) estimation and reporting functionalities are discussed with regard to heterogeneous networks to reduce the number of inconsistent CQI estimates transmitted to an evolved node B (eNB), where the CQI is defined as inconsistent when the rank indicator, on which the CQI is conditioned, is from a different subframe type than the subframe on which the CQI is to be estimated.
Abstract:
Periodic over-the-air channel state information (CSI) reporting to serving cells and one or more non-serving cells via a control channel multi-point attachment is disclosed. The channel state information report may be transmitted based on information indicating how to transmit the channel state information report to the non-serving cell. The information indicating how to transmit the channel state information report may be provided by the serving eNodeB. The information may include a periodicity, offset parameters, timing advance commands, power control commands, and/or an aperiodic report request.
Abstract:
Methods and apparatuses are described for improving identification of reference signal transmissions at a user equipment (UE). One or more restrictions related to reference signal transmissions in one or more interfering signals can be identified. One or more reference signal transmissions received in the one or more interfering signals can then be detected based at least in part on the one or more restrictions. The one or more reference signal transmissions received in the one or more interfering signals can be processed to improve communications with a serving base station.
Abstract:
Rank indicator and channel quality indicator (CQI) estimation and reporting functionalities are discussed with regard to heterogeneous networks to reduce the number of inconsistent CQI estimates transmitted to an evolved node B (eNB), where the CQI is defined as inconsistent when the rank indicator, on which the CQI is conditioned, is from a different subframe type than the subframe on which the CQI is to be estimated.
Abstract:
Time division multiplexing (TDM) partitioning is one of the inter-cell interference coordination (ICIC) mechanisms considered for a heterogeneous network (HetNet) ICIC in a co-channel deployment. For example, in subframes that are pre-allocated to an evolved Node B (eNB), neighbor eNBs may not transmit, hence interference experienced by served user equipments (UEs) may be reduced. Semi-persistent scheduling (SPS) grants may have various available periodicities, which may not be compatible with TDM partitioning. Therefore, a UE may miss an SPS opportunity that was scheduled for a subframe that was not usable by the UE. Hence, using SPS grants with small periodicities in a heterogeneous network with TDM partitioning may require changes which may include adjusting the periodicities of the SPS grants, rescheduling of uplink SPS messages based on resource partitioning information (RPI), and/or determining RPI based on current SPS grants.
Abstract:
Techniques for estimating and reporting channel quality indicator (CQI) are disclosed. Neighboring base stations may cause strong interference to one another and may be allocated different resources, e.g., different subframes. A UE may observe different levels of interference on different resources. In an aspect, the UE may determine a CQI for resources allocated to a base station and having reduced or no interference from at least one interfering base station. In another aspect, the UE may determine multiple CQI for resources of different types and associated with different interference levels. For example, the UE may determine a first CQI based on at least one first subframe allocated to the base station and having reduced or no interference from the interfering base station(s). The UE may determine a second CQI based on at least one second subframe allocated to the interfering base station(s).