Abstract:
Some implementations provide automatic display mode selection for a device, such as a mobile display device, according to a hierarchy of criteria. Each display mode may correspond with a set of display parameter settings, which may include a color depth setting, a brightness setting, etc. In some examples, one of the criteria may correspond with a software application being executed on the device. Some implementations involve creating a display device user profile and controlling a display of a mobile display device according to the user profile. The user profile may be built gradually over some number of days/weeks/months after the first use of the device. In some implementations, display parameter setting information or other device setting information corresponding to data in a user profile, including but not limited to demographic data, may be received by a mobile display device from another device, such as a server.
Abstract:
Some implementations provide automatic display mode selection for a device, such as a mobile display device, according to a hierarchy of criteria. Each display mode may correspond with a set of display parameter settings, which may include a color depth setting, a brightness setting, etc. In some examples, one of the criteria may correspond with a software application being executed on the device. Some implementations involve creating a display device user profile and controlling a display of a mobile display device according to the user profile. The user profile may be built gradually over some number of days/weeks/months after the first use of the device. In some implementations, display parameter setting information or other device setting information corresponding to data in a user profile, including but not limited to demographic data, may be received by a mobile display device from another device, such as a server.
Abstract:
This disclosure provides systems, methods, and apparatus for mirror displays. In one aspect, a mirror display can include a front transparent substrate, a rear transparent substrate, and a plurality of display elements between the front transparent substrate and the rear transparent substrate. A first light-blocking layer can be on a rear surface of the front transparent substrate. The first light blocking layer can have a reflectance of at least about 50%. A plurality of apertures can be formed through the first light-blocking layer. Each aperture can correspond to a respective one of the plurality of display elements. The total area of the apertures can account for less than about 50% of the area of the image-rendering region.
Abstract:
This disclosure provides devices, systems and methods for providing MEMS display elements in a display region and MEMS sensors in a shelf region. In one aspect, a display device includes a first substrate with a display region and a shelf region extending from the display region, and a second substrate over the display region and a portion of the shelf region. MEMS display elements can be in the display region and MEMS sensors can be in the covered portion of the shelf region. In some implementations, the MEMS sensors are formed simultaneously as the MEMS display elements. In some implementations, the MEMS sensors share at least two or more thin film layers with the MEMS display elements. In some implementations, the MEMS sensors are sealed by a hermetic seal and the MEMS display elements are sealed by a non-hermetic seal.
Abstract:
This disclosure provides systems, methods and apparatus for integrating a photovoltaic cell with a display device. One innovative aspect of the subject matter described in this disclosure can be implemented in a display device that includes a first transparent panel and an array of display elements arranged adjacent the first panel. Each display element includes a shutter-based assembly including at least one shutter and at least one actuator capable of translating the shutter to modulate light. The display device also includes a photovoltaic aperture layer arranged adjacent the first panel. The photovoltaic aperture layer includes an array of apertures, each aperture allowing light from a corresponding display element to pass through the photovoltaic aperture layer for display. The display device further includes an array of conductive leads capable of receiving electrical power generated from the photovoltaic aperture layer.