Abstract:
The invention is a high molecular weight polyether polyol prepared by the reaction of one or more compounds having one or more active hydrogen compounds with one or more alkylene oxides in the presence of a catalyst comprising calcium having counterions of carbonate and a C6-10 alkanoate in a solvent or dispersant which does not contain active hydrogen atoms. The polyether polyol prepared preferably has an equivalent weight of from about 1000 to about 20,000, a polydispersity of 1.3 or less and a residual catalyst level of from about 0 to about 2000 parts per million (ppm). In another embodiment the invention is a process for preparing such high molecular weight polyether polyols. The process comprises first, contacting one or more compounds having one or more active hydrogen atoms with one or more alkylene oxides in the presence of a catalyst. The catalyst comprises calcium having counterions of carbonate and a C6-10 alkanoate in a solvent, wherein the solvent does not contain active hydrogen atoms. The mixture is exposed to conditions at which the alkylene oxides react with the compound containing more than one active hydrogen atoms such that a polyether polyol is prepared which has an equivalent weight of from about 1,000 to about 20,000, a polydispersity of about 1.3 or less and a residual catalyst level of from about 0 to about 1000 (ppm).
Abstract:
The invention is a high molecular weight polyether polyol prepared by the reaction of one or more compounds having one or more active hydrogen compounds with one or more alkylene oxides in the presence of a catalyst comprising calcium having counterions of carbonate and a C6-10 alkanoate in a solvent or dispersant which does not contain active hydrogen atoms. The polyether polyol prepared preferably has an equivalent weight of from about 1000 to about 20,000, a polydispersity of 1.3 or less and a residual catalyst level of from about 0 to about 2000 parts per million (ppm). In another embodiment the invention is a process for preparing such high molecular weight polyether polyols. The process comprises first, contacting one or more compounds having one or more active hydrogen atoms with one or more alkylene oxides in the presence of a catalyst. The catalyst comprises calcium having counterions of carbonate and a C6-10 alkanoate in a solvent, wherein the solvent does not contain active hydrogen atoms. The mixture is exposed to conditions at which the alkylene oxides react with the compound containing more than one active hydrogen atoms such that a polyether polyol is prepared which has an equivalent weight of from about 1,000 to about 20,000, a polydispersity of about 1.3 or less and a residual catalyst level of from about 0 to about 1000 (ppm).
Abstract:
The invention is a high molecular weight polyether polyol prepared by the reaction of one or more compounds having one or more active hydrogen compounds with one or more alkylene oxides in the presence of a catalyst comprising calcium having counterions of carbonate and a C6-10 alkanoate in a solvent or dispersant which does not contain active hydrogen atoms. The polyether polyol prepared preferably has an equivalent weight of from about 1000 to about 20,000, a polydispersity of 1.3 or less and a residual catalyst level of from about 0 to about 2000 parts per million (ppm). In another embodiment the invention is a process for preparing such high molecular weight polyether polyols. The process comprises first, contacting one or more compounds having one or more active hydrogen atoms with one or more alkylene oxides in the presence of a catalyst. The catalyst comprises calcium having counterions of carbonate and a C6-10 alkanoate in a solvent, wherein the solvent does not contain active hydrogen atoms. The mixture is exposed to conditions at which the alkylene oxides react with the compound containing more than one active hydrogen atoms such that a polyether polyol is prepared which has an equivalent weight of from about 1,000 to about 20,000, a polydispersity of about 1.3 or less and a residual catalyst level of from about 0 to about 1000 (ppm).
Abstract:
The invention is a high molecular weight polyether polyol prepared by the reaction of one or more compounds having one or more active hydrogen compounds with one or more alkylene oxides in the presence of a catalyst comprising calcium having counterions of carbonate and a C6-10 alkanoate in a solvent or dispersant which does not contain active hydrogen atoms. The polyether polyol prepared preferably has an equivalent weight of from about 1000 to about 20,000, a polydispersity of about 1.3 or less and a residual catalyst level of from about 0 to about 2000 parts per million (ppm).
Abstract:
The invention is a high molecular weight polyether polyol prepared by the reaction of one or more compounds having one or more active hydrogen compounds with one or more alkylene oxides in the presence of a catalyst comprising calcium having counterions of carbonate and a C6-10 alkanoate in a solvent or dispersant which does not contain active hydrogen atoms. The polyether polyol prepared preferably has an equivalent weight of from about 10,000 to about 30,000, a polydispersity of 1.3 or less and a residual catalyst level of from more than 0 to about 2000 parts per million (ppm). In another embodiment the invention is a process for preparing such high molecular weight polyether polyols. The process comprises first, contacting one or more compounds having one or more active hydrogen atoms with one or more alkylene oxides in the presence of a catalyst. The catalyst comprises calcium having counterions of carbonate and a C6-10 alkanoate in a solvent, wherein the solvent does not contain active hydrogen atoms. The mixture is exposed to conditions at which the alkylene oxides react with the compound containing more than one active hydrogen atoms such that a polyether polyol is prepared which has an equivalent weight of from about 10,000 to about 30,000, a polydispersity of about 1.3 or less and a residual catalyst level of from more than 0 to about 2,000 (ppm).
Abstract:
The invention is a high molecular weight polyether polyol prepared by the reaction of one or more compounds having one or more active hydrogen compounds with one or more alkylene oxides in the presence of a catalyst comprising calcium having counterions of carbonate and a C6-10 alkanoate in a solvent or dispersant which does not contain active hydrogen atoms. The polyether polyol prepared preferably has an equivalent weight of from about 1000 to about 20,000, a polydispersity of 1.3 or less and a residual catalyst level of from about 0 to about 2000 parts per million (ppm). In another embodiment the invention is a process for preparing such high molecular weight polyether polyols. The process comprises first, contacting one or more compounds having one or more active hydrogen atoms with one or more alkylene oxides in the presence of a catalyst. The catalyst comprises calcium having counterions of carbonate and a C6-10 alkanoate in a solvent, wherein the solvent does not contain active hydrogen atoms. The mixture is exposed to conditions at which the alkylene oxides react with the compound containing more than one active hydrogen atoms such that a polyether polyol is prepared which has an equivalent weight of from about 1,000 to about 20,000, a polydispersity of about 1.3 or less and a residual catalyst level of from about 0 to about 1000 (ppm).
Abstract:
Synthetic lubricants comprising 15 to 45 weight percent of an ester of a monohydric alcohol of 4 to 18 carbon atoms with one or more aromatic or alkane dicarboxylic acids having 4 to 18 carbon atoms blended with 85 to 55 weight percent of one or more polyether polyols having a number average molecular weight from about 400 to 5000. The blends are compounded with antioxidants, corrosion inhibitors, and metal deactivators to produce a superior lubricant for reciprocating air compressors which gives a long life to the compressors.
Abstract:
New catalysts are described for promoting the reaction of organic isocyanates with organic compounds bearing active hydrogen. These new catalysts correspond to the formula ##STR1## WHEREIN: N IS AN INTEGER OF FROM 1 TO 3; R.sub.1 is an n-valent organic radical;R.sub.2 is hydrogen, hydrocarbyl or inertly-substituted hydrocarbyl;R.sub.3 and R.sub.4 are each independently hydrogen, hydrocarbyl, inertly-substituted hydrocarbyl, or, R.sub.3 and R.sub.4 are joined to form a 5- or 6-membered carbocyclic ring. The catalysts are delayed-action, heat-activated catalysts which are particularly useful in the preparation of polyurethanes.
Abstract:
Synthetic lubricants comprising 15 to 45 weight percent of an ester of a hindered polyhydric alcohol having 3 to 8 hydroxy groups and 5 to 10 carbon atoms with one or more alkanoic acids having 4 to 18 carbon atoms blended with 85 to 55 weight percent of one or more polyether polyol having an number average molecular weight from about 400 to 5000. The blends are compounded with antioxidants, corrosion inhibitors, and metal deactivators to produce a superior lubricant for rotary screw compressors that has a long life.
Abstract:
Compounds of formulas I and II are heat-activated catalysts used in making polyurethanes. ##STR1## wherein R, R.sub.1, and R.sub.2 are each independently H, hydrocarbyl or an inertly-substituted hydrocarbyl; R.sub.3 and R.sub.4 are each independently hydrocarbyl or an inertly-substituted hydrocarbyl; and X is an anion. Upon heating, Compounds I and II catalyze the reaction and may release gaseous by-products which cause the resulting polyurethane compound to foam. For example, the catalyst, t-butyl imidazole-N-carboxylate, when heated to 120.degree. C., catalyzes the reaction between a polyol and a polyisocyanate to give a foamed polyurethane which cured in 16 minutes.