Abstract:
The present invention provides an appliance for chip removal applications comprising a vibration-damping material wherein the vibration-damping material is a material arranged by nano-dimensional cluster form. The present invention additionally provides a method for manufacturing said appliance. The present invention provides also an appliance obtainable by said method. Additionally the present invention provides an article or work piece for use in an appliance for chip removal applications. Also a computer program is provided for controlling the above method.
Abstract:
A tool holder 1 has a shaft 2 intended to be arranged in a tool holder in a manufacturing machine, a head 3 on which a cutter is intended to be arranged and a vibration-damping material 4 arranged between, and attached to, the shaft 2 and the head 3 such that the cutter is in contact with the manufacturing machine solely through the vibration-damping material 4, where the vibration-damping material is a metal or an alloy of metals selected from the group consisting of Cu, Ti, Zn, Al and Ni. A method for manufacturing a tool holder in which the surface covering of vibration-damping material is created by electrochemical pulse plating through the tool holder, when functioning as an electrode, being lowered into an electrolyte containing ions of at least one metal selected from the group consisting of Cu, Ti, Zn, Al and Ni.
Abstract:
The present invention provides an appliance for chip removal applications comprising a vibration-damping material wherein the vibration-damping material is a material arranged by nano-dimensional cluster form. The present invention additionally provides a method for manufacturing said appliance. The present invention provides also an appliance obtainable by said method. Additionally the present invention provides an article or work piece for use in an appliance for chip removal applications. Also a computer program is provided for controlling the above method.
Abstract:
A method and holding device for locking an insert into a tool are used in metal removal machining. The tool includes an insert (2) with a upper contact surface or section (4) and a lower contact surface of section (6) and a holder (8) in which the insert (2) is arranged. The holder includes a holder body (10) and a clamping device (12). The holder body has a lower contact surface or section (14). The insert is arranged in the holder such that the upper contact surface or section (4) of the insert is brought into contact and interaction with a bottom surface (16) of a clamping device while the lower contact surface or section (6) of the insert is brought into contact and interaction with the lower contact surface or section (14) of the holder. At least one of the contact surfaces (4, 6) of the insert (2) includes protrusions (20) in the form of rounded cones, teeth or the like, that are pressed, at least partially, into the surface (14, 16) of the opposite holder and to deform the surface of the holder when the insert is arranged and subject to load in the holder (8).
Abstract:
A tool holder 1 has a shaft 2 intended to be arranged in a tool holder in a manufacturing machine, a head 3 on which a cutter is intended to be arranged and a vibration-damping material 4 arranged between, and attached to, the shaft 2 and the head 3 such that the cutter is in contact with the manufacturing machine solely through the vibration-damping material 4, where the vibration-damping material is a metal or an alloy of metals selected from the group consisting of Cu, Ti, Zn, Al and Ni. A method for manufacturing a tool holder in which the surface covering of vibration-damping material is created by electrochemical pulse plating through the tool holder, when functioning as an electrode, being lowered into an electrolyte containing ions of at least one metal selected from the group consisting of Cu, Ti, Zn, Al and Ni.
Abstract:
A tool holder (1) has a shaft (2) intended to be arranged in a tool holder in a manufacturing machine, a head (3) on which a cutter is intended to be arranged and a viscoelastic materials (4) arranged so that the cutter is in contact with the manufacturing machine solely via the viscoelastic material (4), in which at least those parts on the surface (5) of the shaft (2) that are intended to be in contact with the manufacturing machine are provided with the viscoelastic material (4). The viscoelastic material (4) is attached on a bearer material that is attached to the surface (5) of the shaft (2).
Abstract:
A tool holder (1) has a shaft (2) intended to be arranged in a tool holder in a manufacturing machine, a head (3) on which a cutter is intended to be arranged and a viscoelastic materials (4) arranged so that the cutter is in contact with the manufacturing machine solely via the viscoelastic material (4), in which at least those parts on the surface (5) of the shaft (2) that are intended to be in contact with the manufacturing machine are provided with the viscoelastic material (4). The viscoelastic material (4) is attached on a bearer material that is attached to the surface (5) of the shaft (2).