Integrated IR and mm-wave detector
    1.
    发明授权
    Integrated IR and mm-wave detector 失效
    集成IR和mm波检测器

    公开(公告)号:US5432374A

    公开(公告)日:1995-07-11

    申请号:US14938

    申请日:1993-02-08

    Applicant: Paul R. Norton

    Inventor: Paul R. Norton

    CPC classification number: H01L31/024 H01L31/0232 H01L31/1032 H01L31/108

    Abstract: An integrated radiation detector (10) includes a substrate (12) having a first region (14) comprised of Group III-V semiconductor material, such as GaAs, formed over a first surface, and a second region (26) comprised of Group II-VI semiconductor material, for example HgCdTe, formed over a second, opposite surface. The second region has a bandgap selected for absorbing radiation within a first range of wavelengths, such as IR radiation within the range of 12 micrometers to three micrometers. A first detector includes an antenna structure (20) coupled to a Schottky contact (22) for detecting electromagnetic radiation having wavelengths within a second range of wavelengths, such as wavelengths corresponding to frequencies within a range of approximately 30 GHz to approximately 1000 GHz. A second detector includes a photoconductive or photovoltaic infrared detector for collecting charge carriers generated by the absorption of the IR radiation. For a substrate comprised of semi-insulating GaAs, a lattice accommodation region (28) is interposed between the substrate and the second region. An RF potential ground plane is disposed, relative to the Schottky contact, at a distance corresponding to 1/4 of a wavelength. A microlens (42) may be provided in registration with an underlying IR detector for focussing, through the substrate, incident IR radiation.

    Abstract translation: 一种集成放射线检测器(10)包括一个衬底(12),该衬底(12)具有第一区域(14),该第一区域(14)由形成在第一表面上的III-V族半导体材料(例如GaAs)组成,第二区域 -VI半导体材料,例如HgCdTe,形成在第二相对表面上。 第二区域具有选择用于吸收第一波长范围内的辐射的带隙,例如在12微米至3微米的范围内的IR辐射。 第一检测器包括耦合到肖特基接触(22)的天线结构(20),用于检测具有波长在第二波长范围内的波长的波长,例如对应于大约30GHz至大约1000GHz范围内的频率的波长。 第二检测器包括用于收集通过IR辐射的吸收产生的电荷载流子的光电导或光电红外检测器。 对于由半绝缘GaAs构成的衬底,在衬底和第二区域之间插入晶格容纳区域(28)。 RF电位接地面相对于肖特基接触以相当于波长1/4的距离设置。 可以提供微透镜(42)以与下面的IR检测器对准,用于通过衬底聚焦入射的IR辐射。

    Method and apparatus for sensing infrared radiation utilizing a
micro-electro-mechanical sensor
    2.
    发明授权
    Method and apparatus for sensing infrared radiation utilizing a micro-electro-mechanical sensor 失效
    利用微机电传感器感测红外辐射的方法和装置

    公开(公告)号:US5747804A

    公开(公告)日:1998-05-05

    申请号:US713560

    申请日:1996-09-13

    CPC classification number: G01J5/20

    Abstract: Apparatus (102, 202, 302) and method for tunneling rate infrared detection devices formed on a single substrate (100). A counter electrode (104, 207) having a plurality of portions extending from the substrate (100) with the counter electrode (104, 207) suspended above the substrate (100) at a distance from a tunneling electrode (116) so that a tunneling current flows through the counter electrode (104, 207) and tunneling electrode (116) in response to an applied bias voltage. The counter electrode (104, 207) and tunneling electrodes (116) form a circuit that produces an output signal. A force applied to the sensor (102, 202, 302) urges the counter electrode (104, 207, 304) to deflect relative to the tunneling electrode (116) to modulate the output signal. The output signal is a control voltage that is applied between the counter electrode (104, 207, 304) and a control electrode (114) to maintain a constant tunneling current. In the preferred embodiment, two cantilever portions (108, 110) extend from the wafer surface (100). In a further embodiment, three portions (206, 208, 210) extend from the substrate (100). In an alternate embodiment, a counter electrode (304) having a varying width is fabricated.

    Abstract translation: 用于形成在单个基板(100)上的隧道速率红外检测装置的装置(102,202,302)和方法。 具有从衬底延伸的多个部分的对电极(104,207)与相对电极(104,207)在隧道电极(116)的一定距离处悬挂在衬底(100)上方,使得隧道 响应于所施加的偏压,电流流过对电极(104,207)和隧穿电极(116)。 对电极(104,207)和隧道电极(116)形成产生输出信号的电路。 施加到传感器(102,202,302)的力促使对电极(104,207,304)相对于隧道电极(116)偏转以调制输出信号。 输出信号是施加在对置电极(104,207,304)与控制电极(114)之间以保持恒定的隧穿电流的控制电压。 在优选实施例中,两个悬臂部分(108,110)从晶片表面(100)延伸。 在另一实施例中,三个部分(206,208,210)从衬底(100)延伸。 在替代实施例中,制造具有变化宽度的对电极(304)。

    Method and apparatus for concentrating optical flux in a focal plane
array
    3.
    发明授权
    Method and apparatus for concentrating optical flux in a focal plane array 失效
    在焦平面阵列中聚焦光通量的方法和装置

    公开(公告)号:US5422475A

    公开(公告)日:1995-06-06

    申请号:US393338

    申请日:1989-08-11

    Applicant: Paul R. Norton

    Inventor: Paul R. Norton

    CPC classification number: H01L31/0232

    Abstract: A back side illuminated focal plane array (10,20) includes a plurality of radiation detectors (12,26) disposed upon a front surface of the array and further includes a plurality of optical flux concentrating structures (16,22) integrally formed upon or within a back, radiation receiving, surface of the array. Each of the flux concentrating structures is in registration with at least one of the radiation detectors for concentrating optical flux thereon. A method of the invention includes the steps of providing a substrate 30 and preparing a surface of the substrate such that the surface has a faster lateral etch rate than a vertical etch rate when exposed to an etchant. The method further includes a step of providing a mask 32 over the surface of the substrate, the mask having a plurality of openings therethrough individual ones of which are located at a position where a lens element is desired. The method further includes the steps of applying an etchant to the surface of the substrate through the openings within the mask, etching the surface of the substrate such that a plurality of depressions 34 are formed within the surface and depositing a layer 36 of material over the surface of the substrate such that the depressions are filled with the material. The method includes an additional step of removing excess material from the surface of the substrate, the material remaining within each of the depressions forming a lens element.

    Abstract translation: 背面照射焦平面阵列(10,20)包括设置在阵列的前表面上的多个辐射检测器(12,26),并且还包括多个光通量聚集结构(16,22) 在背面,辐射接收,阵列的表面。 每个通量集中结构与至少一个辐射检测器对准,用于在其上聚焦光通量。 本发明的方法包括以下步骤:提供衬底30并制备衬底的表面,使得当暴露于蚀刻剂时,该表面具有比垂直蚀刻速率更快的横向蚀刻速率。 该方法还包括在衬底的表面上设置掩模32的步骤,该掩模具有多个开口,通过其中的多个开口位于其中需要透镜元件的位置。 该方法还包括以下步骤:通过掩模内的开口将蚀刻剂施加到衬底的表面,蚀刻衬底的表面,使得在表面内形成多个凹陷34,并在其上沉积材料层36 基板的表面,使得凹陷被材料填充。 该方法包括从衬底的表面去除多余材料的附加步骤,残留在形成透镜元件的每个凹部内的材料。

    Nonplanar integrated optical device array structure and a method for its fabrication
    4.
    发明授权
    Nonplanar integrated optical device array structure and a method for its fabrication 有权
    非平面集成光器件阵列结构及其制造方法

    公开(公告)号:US06627865B1

    公开(公告)日:2003-09-30

    申请号:US09859619

    申请日:2001-05-15

    CPC classification number: H01L27/1446

    Abstract: An integrated optical device array structure has a plurality of interconnected solid state microelectronic optical device elements associated together on a substrate structure. The optical device elements may be optical detectors or optical emitters. Each optical device element lies on a nonplanar optical array surface. Each optical device element includes an opto-electronic device that interconverts an optical signal and an opto-electronic device electrical signal, and an electrical interface circuit that is in electrical communication with the opto-electronic device electrical signal. The optical device array structure may be fabricated by preparing a flat array of optical device elements and deforming the flat array into the required shape.

    Abstract translation: 集成的光学器件阵列结构具有在衬底结构上连接在一起的多个互连的固态微电子光学器件元件。 光学器件元件可以是光学检测器或光发射器。 每个光学器件元件位于非平面光学阵列表面上。 每个光学器件元件包括互相转换光信号和光电器件电信号的光电器件,以及与光电器件电信号电通信的电接口电路。 光学器件阵列结构可以通过制备光学器件元件的平坦阵列并将平坦阵列变形成所需形状来制造。

    Control of optical crosstalk between adjacent photodetecting regions
    5.
    发明授权
    Control of optical crosstalk between adjacent photodetecting regions 失效
    控制相邻光电检测区域之间的光串扰

    公开(公告)号:US5049962A

    公开(公告)日:1991-09-17

    申请号:US490011

    申请日:1990-03-07

    CPC classification number: H01L31/1035 H01L27/14643 H01L31/02966 H01L31/1032

    Abstract: An array [10] of photodetecting active regions [16] includes a layer of photoresponsive material [14] differentiated into a plurality of photodetecting active regions. The layer has a composition which varies across a thickness of the layer from a first surface of the layer to a second surface [14a] of the layer such that a magnitude of an effective energy bandgap of the layer decreases from the first surface to the second surface. A resulting crystal potential field constrains photoexcited minority charge carriers to exist within a region of the layer which is substantially adjacent to the second, narrower energy bandgap surface. The array further includes a plurality of groove structures [18] formed within the second surface of the layer and extending into the layer to a depth less than the thickness of the layer. A groove is interposed between at least two adjacent active regions for substantially preventing minority carriers from laterally diffusing between active regions. The grooves may be combined with ground plane or guard diode structures, each limiting the diffusion of minority charge carriers along a respective axis. The photodetecting active regions may each comprise a reduced area p-n juntion.

    Photodetector with player covered by N layer
    6.
    发明授权
    Photodetector with player covered by N layer 失效
    带有N层覆盖的播放器的光电探测器

    公开(公告)号:US4914495A

    公开(公告)日:1990-04-03

    申请号:US804711

    申请日:1985-12-05

    CPC classification number: H01L31/1832 H01L31/02966 H01L31/1032 H01L31/18

    Abstract: Photodetectors that produce detectivities close to the theoretical maximum detectivity include an electrically insulating substrate carrying a body of semiconductive material that includes a region of first conductivity type and a region of second conductivity type where the first region overlies and substantially covers the top and sides of the region of second conductivity type and where the junction between the first and second regions creates a depletion layer that separates minority carriers in the region of second conductivity type from majority carriers in the region of first conductivity type. These photodetectors produce high detectivities where radiation incident on the detectors has wavelengths in the range of about 1 to about 25 microns or more, particularly under low background conditions.

    Abstract translation: 产生接近理论最大检测率的检测率的光电检测器包括承载半导体材料体的电绝缘基板,其包括第一导电类型的区域和第二导电类型的区域,其中第一区域覆盖并基本上覆盖 第二导电类型的区域,并且其中第一和第二区域之间的结形成了在第一导电类型的区域中将第二导电类型的区域中的少数载流子与多数载流子分离的耗尽层。 这些光电检测器产生高检测率,其中入射到检测器上的辐射波长在约1至约25微米或更大的范围内,特别是在低背景条件下。

    Method of fabricating a two-color detector using LPE crystal growth
    7.
    发明授权
    Method of fabricating a two-color detector using LPE crystal growth 失效
    使用LPE晶体生长制造双色检测器的方法

    公开(公告)号:US5380669A

    公开(公告)日:1995-01-10

    申请号:US014939

    申请日:1993-02-08

    Applicant: Paul R. Norton

    Inventor: Paul R. Norton

    Abstract: Disclosed is a method of fabricating a two-color radiation detector, and two-color photodetectors fabricated by the method. A structure is grown upon a substrate (10) to provide, in sequence, a LPE grown LWIR n-type layer (12), a MWIR p+ type common contact layer (14), and a MWIR n-type layer (16). Following growth of the MWIR n-type layer, a layer of passivation (18) is applied, and the substrate is removed to so as to enable further processing of the structure into an array (1) of two-color photodetectors. The three layer structure is bonded, prior to further processing, to a supporting substrate (22) with an adhesive bond made to the passivation layer. The supporting substrate is comprised of IR transparent material such as Group IIB-VIA semiconductor material, Group IIIA-VA semiconductor material, Group IVA semiconductor material, sapphire, and combinations thereof. The supporting substrate may be subsequently removed after hybridizing a photodetector array (2) with readout electronics to provide a thinned detector array having a reduced cool-down time.

    Abstract translation: 公开了一种制造双色辐射探测器的方法,以及通过该方法制造的双色光电探测器。 在衬底(10)上生长结构以依次提供LPE生长的LWIR n型层(12),MWIR p +型公共接触层(14)和MWIR n型层(16)。 在MWIR n型层的生长之后,施加钝化层(18),并移除衬底以使得能够将结构进一步处理成双色光电检测器的阵列(1)。 三层结构在进一步处理之前被粘结到具有与钝化层形成的粘合剂粘合剂的支撑基底(22)上。 支撑基板由IR透明材料如IIB-VIA族半导体材料,IIIA-VA族半导体材料,IVA族半导体材料,蓝宝石及其组合构成。 在将光电检测器阵列(2)与读出电子装置杂交后,可以随后移除支撑衬底,以提供具有降低的冷却时间的减薄的检测器阵列。

    Integrated IR and visible detector
    8.
    发明授权
    Integrated IR and visible detector 失效
    集成红外和可见光探测器

    公开(公告)号:US5373182A

    公开(公告)日:1994-12-13

    申请号:US003715

    申请日:1993-01-12

    Applicant: Paul R. Norton

    Inventor: Paul R. Norton

    CPC classification number: H01L31/0232 H01L27/1446 H01L31/09

    Abstract: A radiation detector (1) includes a multi-layered substrate (2,10) having a first major surface, which is a radiation receiving surface, and a second major surface disposed opposite to the first major surface. A first detector is formed adjacent to the first major surface, the first detector being responsive to a wavelength or wavelengths of electromagnetic radiation in the range of approximately 0.3 micrometers (near-UV) to approximately 1.2 micrometers (near-IR). A second detector is formed adjacent to the second major surface of the multi-layered substrate, the second detector being responsive to a wavelength or wavelengths of electromagnetic radiation in the range of approximately one micrometer to approximately twenty micrometers (SWIR to VLWIR). In a presently preferred embodiment the second detector is simultaneously responsive to IR radiation within two distinct spectral bands.

    Abstract translation: 辐射检测器(1)包括具有作为辐射接收表面的第一主表面和与第一主表面相对设置的第二主表面的多层基底(2,10)。 第一检测器形成为与第一主表面相邻,第一检测器响应于约0.3微米(近UV)至约1.2微米(近IR)范围内的电磁辐射的波长或波长。 第二检测器形成为与多层基板的第二主表面相邻,第二检测器响应于约1微米至约20微米范围内的电磁辐射的波长或波长(SWIR至VLWIR)。 在目前优选的实施例中,第二检测器同时响应两个不同光谱带内的IR辐射。

    Structure and method of fabricating a trapping-mode
    9.
    发明授权
    Structure and method of fabricating a trapping-mode 失效
    捕获模式的制造方法和结构

    公开(公告)号:US5079610A

    公开(公告)日:1992-01-07

    申请号:US545108

    申请日:1990-06-27

    Applicant: Paul R. Norton

    Inventor: Paul R. Norton

    Abstract: Photodetectors that produce detectivities close to the theoretical maximum detectivity include an electrically insulating substrate carrying a body of semiconductor material that includes a region of first conductivity type and a region of second conductivity type where the region of first conductivity type overlies and covers the junction with the region of second conductivity type and where the junction between the first and second regions separates minority carriers in the region of second conductivity type from majority carriers in the region of first conductivity type. These photodetectors produce high detectivities where radiation incident on the detectors has wavelengths in the range of about 1 to about 25 microns or more, particularly under low background conditions.

    Abstract translation: 产生接近理论最大检测率的检测率的光电检测器包括承载半导体材料体的电绝缘基板,其包括第一导电类型的区域和第二导电类型的区域,其中第一导电类型的区域覆盖并覆盖与 第二导电类型的区域,并且其中第一和第二区域之间的结点将第二导电类型区域中的少数载流子与第一导电类型区域中的多数载流子分开。 这些光电检测器产生高检测率,其中入射到检测器上的辐射波长在约1至约25微米或更大的范围内,特别是在低背景条件下。

    Method of making photodetector with P layer covered by N layer
    10.
    发明授权
    Method of making photodetector with P layer covered by N layer 失效
    用N层覆盖P层的光电探测器的方法

    公开(公告)号:US5004698A

    公开(公告)日:1991-04-02

    申请号:US464840

    申请日:1990-01-16

    CPC classification number: H01L31/1032 H01L31/02966 H01L31/18 H01L31/1832

    Abstract: Photodetectors that produce detectivities close to the theoretical maximum detectivity include an electrically insulating substrate carrying a body of semiconductive material that includes a region of first conductivity type and a region of second conductivity type where the first region overlies and substantially covers the top and sides of the region of second conductivity type and where the junction between the first and second regions creates a depletion layer that separates minority carriers in the region of second conductivity type from majority carriers in the region of first conductivity type. These photodetectors produce high detectivities where radiation incident on the detectors has wavelengths in the range of about 1 to about 25 microns or more, particularly under low background conditions.

    Abstract translation: 产生接近理论最大检测率的检测率的光电检测器包括承载半导体材料体的电绝缘基板,其包括第一导电类型的区域和第二导电类型的区域,其中第一区域覆盖并基本上覆盖 第二导电类型的区域,并且其中第一和第二区域之间的结形成了在第一导电类型的区域中将第二导电类型的区域中的少数载流子与多数载流子分离的耗尽层。 这些光电检测器产生高检测率,其中入射到检测器上的辐射波长在约1至约25微米或更大的范围内,特别是在低背景条件下。

Patent Agency Ranking