Abstract:
An exhaust gas turbocharger for an internal-combustion engine has a turbine wheel which is arranged in a housing of the exhaust gas turbocharger and to which exhaust gas can be fed by way of a flow duct constructed in the housing. A variable baffle is provided for adjusting the flow cross-section of the flow duct. In order to equip the exhaust gas turbocharger with a braking function at low manufacturing and mounting expenditures, the baffle is movably accommodated in a matrix which is detachably held on the housing. The baffle and the matrix form an exchangeable braking module.
Abstract:
In an engine braking method for a supercharged internal combustion engine, wherein combustion air, which is under boost pressure and is supplied to the cylinders under the control of engine inlet and outlet valves, is compressed in the cylinders and is subsequently discharged into the exhaust tract, engine braking takes place in a two-stroke operating mode.
Abstract:
An exhaust-gas turbocharger turbine of an internal combustion engine is provided with a spiral guide passage arranged in a turbine housing, a turbine impeller, a flow gap be ween the guide passage and the turbine impeller, and guide blades forming a guide cascade. The guide cascade with the guide blades projects axially from a support, arranged so as to be displaceable in the axial direction in the turbine housing, in such a way that the guide blades, in normal operation, are mounted in recesses of a housing wall part of the turbine housing, the recesses, in the form of a female piece, forming a mating profile shape for the guide blades. In braking operation of the internal combustion engine, the guide blades project into the flow gap during an axial displacement of the support. The device with actuation for the braking operation can be fitted as a complete module into the turbine spiral.
Abstract:
A method and apparatus for regulating a supercharged internal combustion engine that has two rows of cylinders, with an exhaust turbocharger associated with each row, a control signal for adjusting at least one exhaust turbocharger is generated in a regulating unit, taking into account state parameters that describe the operating state of the engine. In order to supply the supercharged internal combustion engine uniformly with combustion air to regulate the engine, a state parameter is measured in the vicinity of the compressor of the exhaust turbocharger and a regulating parameter is formed from the state parameter according to a given control law. The control parameter is supplied as a control signal to a control member that influences the effective turbine cross section.
Abstract:
An exhaust-gas turbocharger for an internal combustion engine has a turbine having a variable turbine geometry for the variable setting of the effective flow inlet cross section to the turbine wheel. The exhaust-gas turbocharger has a compressor which is connected to the turbine via a shaft. The variable turbine geometry can be adjusted by means of a regulating device between a closed position and an open position. To compensate for wear, a stop limiting an end position of the variable turbine geometry is provided, and the position of this stop can be set in a variable manner.
Abstract:
In a turbocharger system for internal combustion engines, the internal combustion engine has at least one combustion chamber with a variable volume and a swept volume determined by the sum of the differential volumes between the smallest and largest volumes of the combustion chambers of the internal combustion engine. The turbocharger system associated to the internal combustion engine has at least one turbine arranged in the exhaust gas pipe of the internal combustion engine and provided with a flow channel which opens via an annular jet-shaped region onto a turbine wheel. A guiding apparatus arranged in the opening region of the flow channel has a variable guiding grid with adjustable guiding blades which make it possible to obtain free flow sections of different sizes and which acts as a throttle during braking in an adjustable manner, depending on the operational parameters of the internal combustion engine, for determining the narrowest flow section in the exhaust gas pipe that leads to the turbine. The system is characterized in that at maximum braking power the relation between the free flow section A in the exhaust gas pipe that leads to the turbine, the inlet diameter D of the turbine wheel and the swept volume VH of the internal combustion engine is described by the equation (I) when the braking power supplied by the internal combustion engine during braking is at its maximum, the turbo-braking factor (TBF) being smaller than 0.0005 (5%). The internal combustion engine and the turbocharger are matched so as to supply maximum braking power with low thermal stress.
Abstract:
In an engine braking arrangement for an internal combustion engine with an exhaust gas turbocharger including a turbine arranged in the engine exhaust duct and a compressor driven by the turbine and arranged in the engine intake duct, a brake valve disposed in the exhaust duct upstream of the turbine and a pressure relief line extending from the exhaust duct upstream of the turbine rotor to an area downstream of the turbine and including a stop valve, the stop valve is a rotationally adjustable rotary valve operable by an actuating device depending on the intake pressure in the intake duct.
Abstract:
In an engine braking operation for a supercharged internal-combustion engine which has an exhaust gas turbocharger having a turbine with a variable turbine geometry, the turbine geometry is adjusted between a ram position to reduce the effective turbine cross-section and an opening position to open the effective turbine cross-section. In order to influence the action of the engine brake simply, such that a braking is adapted to different situations, the variable turbine geometry is adjusted between a definable hard braking adjustment and a definable soft braking adjustment. The hard braking adjustment is situated between the ram position and a drive starting position assigned to the fired drive operating mode. The soft braking adjustment is situated between the drive starting position and the opening position. The hard braking adjustment is selected so that the engine braking power is higher than in the soft braking adjustment.
Abstract:
In an exhaust gas re-circulation arrangement for a supercharged internal combustion engine including an exhaust gas turbocharger with an exhaust gas turbine and a compressor, first and second exhaust pipes extending from the engine separately to the exhaust gas turbine, a charge air duct extending from the compressor to the engine and an exhaust gas recirculation line extending from one of the exhaust pipes upstream of the exhaust gas turbine to the charge air duct downstream of the compressor, the exhaust gas turbine has two turbine inlet flow passages, which provide for different flow volumes and to each of which one of the exhaust pipes is connected and a control arrangement is provided for controlling the exhaust gas flow through the turbine inlet flow passages so as to control the pressure in the exhaust gas re-circulation line to be higher than in the charge air intake duct.
Abstract:
In an exhaust gas turbocharger for an internal combustion engine with a turbine casing including a turbine inlet structure with two flow passages separated by a partition, a turbine control valve is arranged in the partition and is in communication with a turbine bypass flow passage, which is disposed in the partition and extends to the turbine outlet for discharging exhaust gases from at least one of the two turbine inlet flow passages to the turbine outlet under the control of the turbine bypass valve.