摘要:
A metallic interconnect includes a fuse portion that is readily vaporized upon exposure to the radiant energy of a laser. A layer of optically absorptive material is formed on top of an aluminum based metallic interconnect and together they are formed by a photolithographic and etch technique into a fuse portion. A low energy laser having a Gaussian energy distribution focused on the absorptive layer produces heat in the absorptive layer. The heat is transferred to the underlying aluminum based interconnect. The concentration of energy made possible by the absorptive layer allows the low energy laser to blow the fuse thereby producing an electrical open in the interconnect without damaging surrounding silicon substrate and/or polysilicon structures below or nearby the metal fuse.
摘要:
A metallic interconnect includes a fuse portion that is readily vaporized upon exposure to the radiant energy of a laser. A layer of optically absorptive material is formed on top of an aluminum based metallic interconnect and together they are formed by a photolithographic and etch technique into a fuse portion. A low energy laser having a Gaussian energy distribuution focused on the absorptive layer produces heat in the absorptive layer. The heat is transferred to the underlying aluminum based interconnect. The concentration of energy made possible by the absorptive layer allows the low energy laser to blow the fuse thereby producing an electrical open in the interconnect without damaging surrounding silicon substrate and/or polysilicon structures below or nearby the metal fuse.
摘要:
A method for forming CMOS transistors and ferroelectric capacitors on a single substrate (10) with improved yield begins by forming CMOS transistors (37a, 37b, 40, 42). A hydrogen anneal using 4-5% hydrogen and a remainder nitrogen is performed to reduce dangling atomic bonds at the gate dielectric/substrate interface of the transistors (37a, 37b, 40, 42). A silicon nitride layer (48) is then deposited over the transistors and on the backside of the wafer substrate (10) in order to substantially encapsulate the effects of the hydrogen anneal to the CMOS transistors (37a, 37b, 40, 42). Ferroelectric capacitor layers (54, 58, 60, 62, 64) are formed overlying the nitride layer (48) where the ferroelectric capacitor layers (54, 58, 60, 62, 64) are oxygen annealed in pure O.sub.2. The nitride layer (48) prevents the transistor hydrogen anneal from damaging the ferroelectric material by containing the hydrogen.
摘要:
A capacitor with a metal-oxide dielectric layer is formed with an upper electrode layer that is electrically connected to an underlying circuit element. The capacitor may be used in forming storage capacitors for DRAM and NVRAM cells. After forming an underlying circuit element, such as a source/drain region of a transistor, a metal-oxide capacitor is formed over the circuit element. An opening is formed through the capacitor and extends to the circuit element. An insulating spacer is formed, and a conductive member is formed that electrically connects the circuit element to the upper electrode layer of the metal-oxide capacitor. Devices including DRAM and NVRAM cells and methods of forming them are disclosed.
摘要:
Both a non-volatile memory (NVM) and a dynamic nanocrystal memory (DNM) are integrated on a semiconductor substrate. Control gates and control dielectrics with embedded nanocrystals or discrete storage elements are formed over differing thicknesses of tunnel dielectrics to form the two memories. Source and drain regions are formed within the semiconductor substrate adjacent to the tunnel dielectrics. Various methods can be used to form a thin tunnel oxide and a thick tunnel oxide by adding minimum processing steps.
摘要:
An inductive-write magnetoresistive-read horizontal head for magnetic recording having two polarization conductors. The two polarization conductors are used to simultaneously activate a MR sensor and to disable the write head during the read back process to eliminate the secondary read back signal from the inductive-write head. During the read process, the current through a first conductor biases the MR stripe while current through the second conductor generates an applied field to switch the magnetization of the Permalloy (NiFe) in the write head pole and reduce the permeability. The head incorporates write-wide read-narrow head attributes and has the reliability advantages associated with yoke or recessed MR or GMR structures. The magnetoresistive stripe may be disposed directly in the gap of the heads or it may be recessed.
摘要:
A capacitor for use in a memory cell (10). A transistor is formed overlying a substrate (10). The transistor has a first current electrode (16) and a second current electrode (18). The current electrodes (16 and 18) are separated by a channel region. A gate electrode (26) is formed overlying the channel region and is physically separated from the channel region by a gate dielectric layer (24). A plug region (32) is formed overlying and electrically connected to the first current electrode (16). An annular high-permittivity dielectric region (33) is formed overlying the transistor and is formed from a high-permittivity dielectric layer (36). A first capacitor electrode is formed via a conductive region (38"), and a second capacitor electrode is formed via a conductive region (38'). The memory cell (10) can be formed as a non-volatile memory cell or a DRAM cell depending upon various properties of the annular high-permittivity dielectric region (33).
摘要:
A capacitor for use in a memory cell (10). A transistor is formed overlying a substrate (10). The transistor has a first current electrode (16) and a second current electrode (18). The current electrodes (16 and 18) are separated by a channel region. A gate electrode (26) is formed overlying the channel region and is physically separated from the channel region by a gate dielectric layer (24). A plug region (32) is formed overlying and electrically connected to the first current electrode (16). An annular high-permittivity dielectric region (33) is formed overlying the transistor and is formed from a high-permittivity dielectric layer (36). A first capacitor electrode is formed via a conductive region (38"), and a second capacitor electrode is formed via a conductive region (38'). The memory cell (10) can be formed as a non-volatile memory cell or a DRAM cell depending upon various properties of the annular high-permittivity dielectric region (33).
摘要:
Both a non-volatile memory (NVM) and a dynamic nanocrystal memory (DNM) are integrated on a semiconductor substrate. Control gates and control dielectrics with embedded nanocrystals or discrete storage elements are formed over differing thicknesses of tunnel dielectrics to form the two memories. Source and drain regions are formed within the semiconductor substrate adjacent to the tunnel dielectrics. Various methods can be used to form a thin tunnel oxide and a thick tunnel oxide by adding minimum processing steps.
摘要:
Method for forming a semiconductor device having an capacitor, where the capacitor is in-laid in a cavity formed in the semiconductor substrate and part of a high density memory. One embodiment first forms a bottom electrode in the cavity and then fills the cavity with a sacrificial layer to allow chemical mechanical polishing (CMP) of at least one of the capacitor electrodes. After removing portions of the bottom electrode and portions of the sacrificial layer, a dielectric layer is formed. A top electrode is then formed over the dielectric layer. The dielectric layer so formed isolates the bottom electrode from the top electrode preventing shorting and leakage currents. In one embodiment, a single top electrode layer is formed for multiple bottom electrodes, reducing the complexity of the memory circuit.