Abstract:
A lens system is configured to form an image on an imaging element having a quadrilateral shape disposed on an optical axis, and includes a first free-curved lens being asymmetrical with respect to the optical axis. A free-curved surface of the first free-curved lens has negative refractive power at an intersection point between a circle separated from the optical axis by a length having a predetermined ratio with respect to a minimum image height and a first surface passing through the optical axis and parallel to longer sides of the imaging element, and positive refractive power at an intersection point between a circle separated from the optical axis by a length having the predetermined ratio with respect to the minimum image height and a second surface passing through the optical axis and parallel to shorter sides of the imaging element. The predetermined ratio ranges from 40% to 80% inclusive.
Abstract:
An imaging apparatus is attached to a side of a moving body (for example, vehicle). The imaging apparatus includes an image sensor and an optical system that forms a subject image in a range of a predetermined vertical view angle and a predetermined horizontal view angle on an imaging surface. The optical system forms an image on the imaging surface so as to cause resolution in first region (R1) of the imaging surface to be higher than resolution in second region (R2) different from the first region. A position of center (G1) of first region (R1) is at least one of a position horizontally shifted from a center of the horizontal view angle and a position vertically shifted from a center of the vertical view angle.
Abstract:
An inner focus lens system, in order from an object side, comprising: a first lens unit including a most-object-side negative first lens element; a positive second lens unit; and a negative third lens unit, wherein an aperture diaphragm is included, the first lens unit, the third lens unit, and the aperture diaphragm are fixed relative to an image surface in focusing, the second lens unit moves relative to the image surface in the focusing, and the conditions: BF/Y 1.6 (BF: distance from an apex of an image-side surface of a most-image-side lens element to the image surface; Y: maximum image height; TH: distance from an apex of an object-side surface of a most-object-side lens element to the apex of the image-side surface of the most-image-side lens element; f: focal length of the lens system) are satisfied.
Abstract:
A lens system is configured to form an image on an imaging element having a quadrilateral shape disposed on an optical axis, and includes a first free-curved lens being asymmetrical with respect to the optical axis. A free-curved surface of the first free-curved lens has positive refractive power at an intersection point between a circle separated from the optical axis by a length having a predetermined ratio with respect to a minimum image height and a first surface passing through the optical axis and parallel to longer sides of the imaging element, and negative refractive power at an intersection point between a circle separated from the optical axis by a length having the predetermined ratio with respect to the minimum image height and a second surface passing through the optical axis and parallel to shorter sides of the imaging element.
Abstract:
A lens system forms an image on an imaging element having a quadrilateral shape disposed on an optical axis. The lens system includes a second free-curved lens being asymmetrical with respect to the optical axis. A sag amount of the second free-curved lens in a circle separated from the optical axis by a length having a predetermined ratio with respect to a minimum image height has extrema outside of a first intersection points between a first surface passing through the optical axis and parallel to longer sides of the imaging element and the circle, and a second intersection point between a second surface passing through the optical axis and parallel to shorter sides of the imaging element and the circle. Each of the extrema is greater than the sag amount at the first intersection point or the second intersection point by 0.01 mm or greater.
Abstract:
An imaging device includes a free-form lens having a shape in which (i) in a long-side direction of an imaging element, a resolution that changes along an optical axis long-side resolution curve, and the resolution that changes along a distant point long-side resolution curve in a position away from an optical axis, (ii) in a short-side direction, the resolution that changes along an optical axis short-side resolution curve, and the resolution that changes along a distant point short-side resolution curve in the position away from the optical axis, (iii) the distant point long-side resolution curve follows a shape of the optical axis long-side resolution curve, and has a higher resolution than the optical axis long-side resolution curve, and (iv) the distant point short-side resolution curve follows a shape of the optical axis short-side resolution curve, and has a higher resolution than the optical axis short-side resolution curve.
Abstract:
An imaging optical system has an image circle defined on an imaging element. The imaging optical system includes: lens elements arranged from an object side to an image plane side, and a diaphragm arranged between two of the lens elements. The lens elements include freeform lens elements, each having a freeform surface that is an asymmetrical surface with respect to a first cross section and a second cross section, the first cross section being defined by a first direction and an optical axis direction, the second cross section being defined by a second direction and the optical axis direction, the first direction crossing the second direction, and the optical axis direction being orthogonal to the first direction and the second direction. At least two of the freeform lens elements are located on an object side of the diaphragm.
Abstract:
A zoom lens system includes at least six lens groups, each of which has power. An interval between each pair of lens groups that are adjacent to each other among the at least six lens groups changes while the zoom lens system is zooming. Each of three lens groups, which are respectively located closest, second closest, and third closest to an image plane, out of the at least six lens groups consists of one or more bonded lenses.
Abstract:
An imaging device having an optical system including a free-form surface lens with rotationally asymmetric shape that forms an image on an imaging surface such that a resolution of a first region in front of the predetermined region is higher than a resolution of a second region at a lateral side of the predetermined region. The free-form surface lens has a shape that forms the image such that a resolution of a portion at a predetermined first distance away from a center of the first region in a vertical direction is different from a resolution of a portion at the predetermined first distance away from the center of the first region in a horizontal direction, the vertical direction being orthogonal to the horizontal direction, in the imaging element, in which the first region and the second region are aligned.
Abstract:
A distance measurement system includes: an imaging device including an imaging element where a plurality of imaging pixels are arranged in matrix, and an optical system forming an image of a predetermined region on an imaging surface of the imaging element; and a distance measurer determining a distance to a target object based on data of the image obtained from the imaging element, wherein the optical system includes a free-form surface lens having a rotationally asymmetric shape that forms the image on the imaging surface such that a resolution of a first region in front of the region is higher than that of a second region at a lateral side of the region, each of the resolutions being a ratio of the number of ones of the imaging pixels used to pick up an image included in per unit angle of view to a total number of the imaging pixels.