Abstract:
A gain control circuit includes: a gain switching controller that changes the gains of a fundamental frequency amplifier and an N-multiplied frequency amplifier; and a detection voltage comparator that determines whether the operating state of an N-multiplier is a saturated operation or a linear operation. The detection voltage comparator determines the operating state of the N-multiplier by comparing an amount of change in a detection signal (first detection signal) representing a fundamental frequency signal with respect to an amount of change in the gain of the fundamental frequency amplifier with an amount of change in a detection signal (second detection signal) representing a high-frequency signal with respect to the amount of change in the gain of the fundamental frequency amplifier. The gain switching controller adjusts the gains of the fundamental frequency amplifier and the N-multiplied frequency amplifier on the basis of the operating state of the N-multiplier.
Abstract:
In the stop state of a VCO and an injection locked frequency divider, an ILFD controller sets the control parameter of an injection locked frequency divider on the basis of the frequencies of a reference signal and the frequency-divided signal measured according to the control parameter of the injection locked frequency divider. While the injection locked frequency divider is operated and in the stop state of the VCO, the ILFD controller sets the control parameter of the injection locked frequency divider on the basis of the frequencies of the reference signal and the frequency-divided signal measured according to the control parameter of the injection locked frequency divider.
Abstract:
In the stop state of a VCO and an injection locked frequency divider, an ILFD controller sets the control parameter of an injection locked frequency divider on the basis of the frequencies of a reference signal and the frequency-divided signal measured according to the control parameter of the injection locked frequency divider. While the injection locked frequency divider is operated and in the stop state of the VCO, the ILFD controller sets the control parameter of the injection locked frequency divider on the basis of the frequencies of the reference signal and the frequency-divided signal measured according to the control parameter of the injection locked frequency divider.
Abstract:
There is provided a detection device that includes: a position estimator that estimates a candidate position of a crosswalk in a movement direction of a vehicle and estimates a length of the crosswalk and an intersecting angle between the crosswalk and a roadway using the candidate position; a corrector that corrects the numbers of periods and widths of two basis functions based on the estimated length of the crosswalk and the estimated intersecting angle, the two basis functions corresponding to intervals of white lines of the crosswalk and are orthogonal to each other; and a crosswalk detector that detects whether or not the crosswalk is present using both image data which include the candidate position and the two corrected basis functions.
Abstract:
The present disclosure provides a moving object detection device including a first input circuitry that receives positional information indicating a position of an object present around a vehicle in time sequence from an object detector included in the vehicle, and a controller that processes the positional information received by the first input circuitry in time sequence, detects at least a first continuum along a traveling road of the vehicle, and when a shape of a detected first continuum of this time is changed in comparison with a shape of a previous first continuum, outputs information indicating that another moving object different from the vehicle is present to a vehicle control circuitry of the vehicle.