Abstract:
A controlling method, a connector, and a memory storage device are provided. The controlling method includes following steps. A connection between the memory storage device and a host system is established. A first command is received from the host system and stored into a command queue. The command queue includes at least one second command after the first command is stored into the command queue. Whether a command number of the second commands is greater than a threshold is determined. The threshold is greater than 1. If the command number is greater than the threshold, a using right of the connection is obtained and a second command is executed by the memory storage device. If the command number is not greater than the threshold, a command from the host system is waited for. The using right of the connection belongs to the host system. Thereby, the system efficiency is improved.
Abstract:
A command management method, a memory storage device, and a memory control circuit unit are disclosed. The method includes: obtaining a plurality of commands from a memory of a host system; storing the commands in a first buffer region of the memory storage device; in response to a first command and a second command meeting a pairing condition in the first buffer region, putting the first command and the second command in the first buffer region in a first command queue of the memory storage device; and continuously executing the first command and the second command in the first command queue.
Abstract:
A memory management method for a memory storage device including a rewritable non-volatile memory module is provided according to an exemplary embodiment of the disclosure. The method includes: receiving a first command and performing a first operation corresponding to the first command; transmitting a completion message to a host system corresponding to a completion of the first operation; detecting command processing information; determining a transmission mode of an interruption message according to the command processing information; and transmitting the interruption message to the host system according to the transmission mode.
Abstract:
A data processing method, a memory storage device, and a memory control circuit unit are provided. Here, each physical address corresponds to one flag. The data processing method includes: receiving a reading command; reading first data stored in the physical addresses of a physical programming unit; determining whether a first flag in the physical programming unit is in a first status or a second status; transmitting decrypted first data or decrypted specific-format data to a host system according to whether the first flag is in the first status or the second status. Accordingly, the encryption operation may be simplified.
Abstract:
A data retry-read method, a memory storage device, and a memory control circuit element are provided. The method includes: detecting a notification signal from a volatile memory module; in response to the notification signal, instructing the volatile memory module to execute N command sequences in a buffer; and after the volatile memory module executes the N command sequences, sending at least one read command sequence, according to M physical addresses involved in the N command sequences, to instruct the volatile memory module to read first data from the M physical addresses.
Abstract:
A data retry-read method, a memory storage device, and a memory control circuit element are provided. The method includes: detecting a notification signal from a volatile memory module; in response to the notification signal, instructing the volatile memory module to execute N command sequences in a buffer; and after the volatile memory module executes the N command sequences, sending at least one read command sequence, according to M physical addresses involved in the N command sequences, to instruct the volatile memory module to read first data from the M physical addresses.
Abstract:
A data transmitting method, a memory storage device and a memory control circuit unit are provided. The method is used for a data transmitting operation between the memory storage device and a host system. The host system is recorded with a plurality of submission queues, and the method includes: obtaining at least one first command in a first submission queue from the host system and determining whether a first data quantity of the at least one first command matches a first predetermined condition; obtaining at least one second command in a second submission queue from the host system if the first data quantity matches the first predetermined condition; and sequentially performing a data accessing operation corresponding to the at least one first command and the at least one second command on a rewritable non-volatile memory module in the memory storage device.
Abstract:
A controlling method, a connector, and a memory storage device are provided. The controlling method includes following steps. A connection between the memory storage device and a host system is established. A first command is received from the host system and stored into a command queue. The command queue includes at least one second command after the first command is stored into the command queue. Whether a command number of the second commands is greater than a threshold is determined. The threshold is greater than 1. If the command number is greater than the threshold, a using right of the connection is obtained and a second command is executed by the memory storage device. If the command number is not greater than the threshold, a command from the host system is waited for. The using right of the connection belongs to the host system. Thereby, the system efficiency is improved.
Abstract:
A controlling method for connector is provided, which includes: receiving a first signal stream under a condition that a squelch detector is turned-off; determining whether the first signal stream contains a burst signal under a first operating frequency; if the first signal stream contains the burst signal, turning on the squelch detector and determining by the squelch detector under a second operating frequency whether a second signal stream is a waking signal, wherein the second signal stream is received after receiving the first signal stream and the second operating frequency is greater than the first operating frequency. The controlling method further includes: if the second signal stream is the waking signal, changing an operating state of the connector to an active state. In this way, the power consumption of the connector is reduced.
Abstract:
A controlling method of a connector, the connector, and a memory storage device are provided. The controlling method includes following steps. A first clock signal generated by a first oscillator in the connector is obtained. A second clock signal generated by a second oscillator in the connector is obtained. A frequency shift of the first oscillator is smaller than a frequency shift of the second oscillator. A detection window information corresponding to the second clock signal is corrected according to the first clock signal and the second clock signal. The first oscillator is turned off. A signal stream including a first signal is received. A detection window is generated according to the corrected detection window information and the second clock signal, and whether the first signal is a burst signal is determined according to the detection window. Thereby, the power consumption of the connector is reduced.