Abstract:
A wavelength conversion device includes a matrix containing inorganic material, a phosphor embedded in the matrix, and filler particles embedded in the matrix and containing resin material. This wavelength conversion device prevents the phosphor from falling.
Abstract:
A wavelength conversion element includes a support member having a supporting surface, and a wavelength converter disposed above the supporting surface. The wavelength converter contains first fluorescent particles which absorb excitation light and generate fluorescence (second radiation light), and a transparent binder which bonds the first fluorescent particles, and has a joint surface facing supporting surface, and an incident surface disposed opposite to the joint surface, the excitation light entering the incident surface. The excitation light and fluorescence are emitted from the incident surface. The wavelength converter includes projections. At least part of the projections is disposed on the incident surface. The first fluorescent particles are partially exposed from vertices of the projections.
Abstract:
Provided is a technique for suppressing a temperature rise of a wavelength conversion member. The present disclosure is provided with: phosphor layer containing a phosphor; substrate that supports phosphor layer; and heat sink bonded to substrate, wherein the thermal conductivity of substrate is greater than the thermal conductivity of phosphor layer, and the thermal conductivity of heat sink is greater than the thermal conductivity of substrate, or the thermal conductivity of heat sink is smaller than the thermal conductivity of substrate.
Abstract:
A solid electrolyte material of the present disclosure consists of Li, M1, M2, and X. The M1 is one selected from the group consisting of Mg, Ca, Sr, Ba, and Zn. The M2 is at least one selected from the group consisting of Gd and Sm. The X is at least one selected from the group consisting of F, Cl, Br, and I. A battery of the present disclosure includes a positive electrode, a negative electrode, and an electrolyte layer provided between the positive electrode and the negative electrode. At least one selected from the group consisting of the positive electrode, the negative electrode, and the electrolyte layer includes the solid electrolyte material of the present disclosure.
Abstract:
A wavelength conversion member of the present disclosure includes a first matrix, phosphor particles embedded in the first matrix, and at least one selected from the group consisting of first filler particles embedded in the first matrix and surface coating layers respectively covering surfaces of the phosphor particles. The wavelength conversion member satisfies at least one relationship selected from the group consisting of |n3−n1|>|n1−n2| and |n4−n1|>|n1−n2| wherein n1 is a refractive index of the first matrix, n2 is a refractive index of the phosphor particles, n3 is a refractive index of the first filler particles, and n4 is a refractive index of the surface coating layers.
Abstract:
A wavelength conversion device includes a substrate, a matrix supported by the substrate and containing inorganic material, a phosphor embedded in the matrix, and filler particles embedded in the matrix. A linear expansion coefficient of the filler particles is equal to or larger than 25 ppm/K and equal to or smaller than 790 ppm/K, and is larger than a linear expansion coefficient of the matrix. This wavelength conversion device suppresses warping of the substrate.
Abstract:
Provided is a wavelength conversion member exhibiting high reliability. A wavelength conversion member includes a phosphor layer having a matrix containing ZnO and phosphor particles embedded in the matrix and a first protective layer that contains at least one selected from the group of ZnCl2, ZnS and ZnSO4 and covers the phosphor layer. For example, the first protective layer is in contact with the phosphor layer. For example, ZnO is c-axis-oriented polycrystalline ZnO.
Abstract:
A wavelength conversion device of the present disclosure includes a substrate, a phosphor layer that has a matrix containing zinc oxide and phosphor particles embedded in the matrix and that is supported by the substrate, a dielectric layer disposed between the substrate and the phosphor layer, and a protective layer that is disposed between the phosphor layer and the dielectric layer and that has an isoelectric point equal to or larger than 7. A main surface of the substrate includes, for example, first and second regions. The phosphor layer covers, for example, only the first region out of the first and second regions.
Abstract:
A wavelength conversion member includes a substrate, a dichroic mirror layer, an SiO2 layer, a ZnO layer, and a phosphor layer, which are sequentially stacked from the substrate. The dichroic mirror layer reflects at least part of light incident from the above. The phosphor layer includes a plurality of phosphors and ZnO between the phosphors.