Abstract:
A CHP system includes a combustor (heat source), a Rankine cycle apparatus, and a second heat exchanger. The Rankine cycle apparatus includes, as an evaporator, a first heat exchanger that absorbs thermal energy produced in the combustor. The second heat exchanger is located closer to the combustor than is the evaporator, absorbs thermal energy produced in the combustor, and transfers the thermal energy to a heat medium.
Abstract:
An evaporator which heats working fluid with high-temperature fluid to evaporate the working fluid includes: a working fluid channel arranged in a flow direction of the high temperature fluid and through which the working fluid flows; and a temperature sensor provided for the working fluid channel. A part of the working fluid channel is exposed to outside of a housing of the evaporator, and the temperature sensor is provided in the part of the working fluid channel exposed to the outside of the housing of the evaporator in a region other than an inlet of the working fluid channel into which the working fluid flows from the outside of the evaporator and other than an outlet of the working fluid channel through which the working fluid flows out of the evaporator. The output value of the temperature sensor is used to adjust the temperature of the working fluid.
Abstract:
An air cooling unit is an air cooling unit used in a Rankine cycle system and includes an expander and a condenser. The expander recovers energy from a working fluid by expanding the working fluid. The condenser cools the working fluid using air. The air cooling unit includes a heat-transfer reducer that reduces heat transfer between the expander and an air path.
Abstract:
A CHP system includes a combustor as a heat source, a Rankine cycle apparatus, a second heat exchanger, and a thermal fluid flow path. The Rankine cycle apparatus includes, as an evaporator, a first heat exchanger that absorbs thermal energy from combustion gas (thermal fluid). The second heat exchanger absorbs thermal energy from the combustion gas and transfers the thermal energy to a heat medium. The first heat exchanger and the second heat exchanger are disposed in the thermal fluid flow path. The thermal fluid flow path includes a first flow path that allows the combustion gas to reach the first heat exchanger directly from the combustor and a second flow path that allows the combustion gas to reach the second heat exchanger directly from the combustor.
Abstract:
A Rankine cycle apparatus includes a pump, an evaporator, an expander, and a condenser. The evaporator has a plurality of heat transfer tubes arranged in rows in a flow direction of a high-temperature fluid to be heat-exchanged with a working fluid. The heat transfer tube located in a most upstream row in the flow direction of the high-temperature fluid is defined as a most upstream heat transfer tube. For example, the most upstream heat transfer tube forms an inlet of the evaporator so that the working fluid flows into the evaporator through the inlet and first passes through the most upstream heat transfer tube.
Abstract:
A Rankine cycle apparatus includes a pump, an evaporator, an expander, a condenser, and an internal heat exchanger. The internal heat exchanger allows heat exchange to take place between a working fluid discharged from the expander and a working fluid discharged from the pump. A temperature of the working fluid at an inlet of the expander is set so that a temperature of the working fluid at an outlet of the expander be higher than a saturation temperature on a high-pressure side of the cycle.
Abstract:
Provided is a refrigeration apparatus capable of appropriately supplying oil separated by oil separators to compressors according to the situation. The refrigeration apparatus includes refrigeration units each including a compressor, an oil separator, an oil return pipe, and a heat dissipation heat exchanger; a pressure reducing valve connected to the heat dissipation heat exchangers; and an oil return control mechanism controlling a return destination of the oil separated by the oil separators. The oil return control mechanism includes an oil supply pipe connecting the oil return pipes; a flow control mechanism, controlling a flowing condition of oil in the oil supply pipe, disposed in the oil supply pipe; and an ejection control mechanism, controlling an ejection condition of oil ejected from the oil separator, disposed in each oil return pipe at a position closer to the oil separator than a connection position with the oil supply pipe is.
Abstract:
Provided is a refrigeration apparatus capable of appropriately supplying oil separated by oil separators to compressors according to the situation. The refrigeration apparatus includes N refrigeration units each including a compressor, an oil separator, an oil return pipe, and a heat dissipation heat exchanger; N pressure reducing valves each connected to the heat dissipation heat exchanger of a corresponding one of the N refrigeration units; and an oil return control mechanism that controls a return destination of the oil separated by the oil separators of the N refrigeration units. The oil return control mechanism includes an oil supply pipe that connects the oil return pipes of the N refrigeration units to each other, and a flow control mechanism, which controls a flowing condition of oil in the oil supply pipe, disposed in the oil supply pipe.
Abstract:
A Rankine cycle apparatus includes a pump, an evaporator, an expander, a condenser, and an internal heat exchanger. The internal heat exchanger allows heat exchange to take place between a working fluid discharged from the expander and a working fluid discharged from the pump. A temperature of the working fluid at an inlet of the expander is set so that a temperature of the working fluid at an outlet of the expander be higher than a saturation temperature on a high-pressure side of the cycle.
Abstract:
A CHP system includes a combustor (heat source), a Rankine cycle apparatus, and a second heat exchanger. The Rankine cycle apparatus includes, as an evaporator, a first heat exchanger that absorbs thermal energy produced in the combustor. The second heat exchanger is located farther from the combustor than is the evaporator, is in direct contact with the evaporator or in indirect contact with the evaporator via a thermally-conductive member, absorbs thermal energy produced in the combustor, and transfers the thermal energy to a heat medium.