Abstract:
A disk roll base material includes 25 to 50 wt % of ceramic wool, 5 to 30 wt % of kibushi clay, 2 to 20 wt % of bentonite, and 25 to 45 wt % of a filler selected from alumina, wollastonite and calcined kaolin clay.
Abstract:
The present invention relates to a process for producing a base material for obtaining therefrom ring-shaped disks for use in a disk roll including a rotating shaft and the ring-shaped disks fitted thereon by insertion, whereby the peripheral surface of the disks serves as a conveying surface, the process including molding a raw slurry material into a platy shape and drying the plate, the raw slurry material containing inorganic fibers which have a wet volume of 300 mL/5 g or larger and which are amorphous or have a degree of crystallinity of 50% or lower.
Abstract:
The present invention relates to a process for producing a base material for obtaining therefrom ring-shaped disks for use in a disk roll including a rotating shaft and the ring-shaped disks fitted thereon by insertion, whereby the peripheral surface of the disks serves as a conveying surface, the process including molding a raw slurry material into a platy shape and drying the plate, the raw slurry material containing inorganic fibers which have a wet volume of 300 mL/5 g or larger and which are amorphous or have a degree of crystallinity of 50% or lower.
Abstract:
A disk roll base material includes 20 to 38 wt % of alumina silicate wool that include 40 to 60 wt % of alumina and 40 to 60 wt % of silica, and have a content of shots having a dimension of 45 μm or more of 5 wt % or less, 10 to 30 wt % of kibushi clay, 2 to 20 wt % of bentonite, and 20 to 40 wt % of mica.
Abstract:
A disk roll base material includes 20 to 38 wt % of alumina silicate wool that include 40 to 60 wt % of alumina and 40 to 60 wt % of silica, and have a content of shots having a dimension of 45 μm or more of 5 wt % or less, 10 to 30 wt % of kibushi clay, 2 to 20 wt % of bentonite, and 20 to 40 wt % of mica.
Abstract:
A process for producing a base material for disks including forming a raw slurry material into a platy shape and drying the plate, the raw slurry material containing inorganic fibers which have a wet volume of about 300 mL/5 g or larger and which are amorphous or have a degree of crystallinity of about 50% or lower.
Abstract:
A process for producing a base material for disks including forming a raw slurry material into a platy shape and drying the plate, the raw slurry material containing inorganic fibers which have a wet volume of about 300 mL/5 g or larger and which are amorphous or have a degree of crystallinity of about 50% or lower.
Abstract:
A coating fluid holding member including a porous molded body which is formed of heat-resistant fibers (or a mixture of heat-resistant fibers and a filler) bound to each other with a binder, has intercommunicating pores having an average pore size of 1 to 500 .mu.m, and has a porosity of 20 to 90%, and a coating fluid holding member including a porous molded body which is formed of heat-resistant fibers bound to each other with a binder, contains fine intercommunicating interstices between fibers and uniformly distributed pores having a diameter of 0.05 to 2 mm, and has a porosity of 30 to 90%. The holding member has a high fluid holding capacity for its volume and releases the coating fluid, such as a parting agent, an oil or a coating compound, in a stable manner for an extended period of time.
Abstract:
A molded semiconductor device has a plurality of slender leads formed with a sealing strip connecting them together to prevent the molding material from leaking out between the leads. Specifically, the sealing strip comprising an adhesive and an electrically insulating material is applied to the leads substantially perpendicular to the lengthwise direction of the leads. The strip is place such that an inner edge thereof substantially lies on a boundary line or inside where the molding terminates. The strip is then thrust into spaces formed between the leads. Thereafter the semiconductor chip is connected to the leads, the semiconductor chip and the leads are placed in a molding unit, the strip serving to block the molding material leaking outside the molding unit.
Abstract:
A leadframe according to this invention is formed by bonding a single leadframe with a substrate using adhesive film or double-sided adhesive resin film, which is divided and attached to two or more predetermined points between them. This reduces the quantity of gas or contaminants generated from adhesives. Also, this results in the reduction of the stress generated during heat treatment of the leadframe and also in the elimination of warping of the lead frame due to thermal stress. Cracking does not occur on the resin because resin is removed easily and assuredly, and no air is left behind. This contributes to high reliability and increased productivity. The lead frame is further formed by bonding a plurality of metal substrates of different materials to single leadframe. This through more stable thermal behavior high reliability.