Abstract:
An apparatus, system, and method for emission filter. A filter apparatus is presented. In one embodiment, the filter apparatus may be adapted for fluorescence spectroscopy. In a particular embodiment, the filter apparatus comprises a solution. The solution may include a polar protic solvent and an absorbing specimen. Additionally, the filter apparatus may include an adhesive to conform the solution into a solid filter.
Abstract:
A photosensitive pixel includes a photosensor and an externally loadable flag. The photosensor outputs a signal indicative of an intensity of incident light. The externally loadable flag indicates the pixel reset state, and is preferably stored in an in-pixel memory. Pixel reset logic resets the photosensor in accordance with the reset state and an externally applied reset signal.
Abstract:
Orally administrable polymer-carrying units for expanding in a stomach of a mammal to fill a space in the stomach, the polymer-carrying units including: a carrier; a plurality of polymer molecules expandable in aqueous solutions, releasably coupled to the carrier; and means for selectively decoupling the polymer molecules from the carrier so that the polymer molecules and carrier are released in the stomach, are provided.
Abstract:
An image sensor includes pixels formed on a semiconductor substrate. Each pixel includes a photoactive region in the semiconductor substrate, a sense node, and a power supply node. A first electrode is disposed near a surface of the semiconductor substrate. A bias signal on the first electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the sense node. A second electrode is disposed near the surface of the semiconductor substrate. A bias signal on the second electrode sets a potential in a region of the semiconductor substrate between the photoactive region and the power supply node. The image sensor includes a controller that causes bias signals to be provided to the electrodes so that photocharges generated in the photoactive region are accumulated in the photoactive region during a pixel integration period, the accumulated photocharges are transferred to the sense node during a charge transfer period, and photocharges generated in the photoactive region are transferred to the power supply node during a third period without passing through the sense node. The imager can operate at high shutter speeds with simultaneous integration of pixels in the array. High quality images can be produced free from motion artifacts. High quantum efficiency, good blooming control, low dark current, low noise and low image lag can be obtained.
Abstract:
Method and apparatus for expanding the dynamic range of an optical imager, comprising individually controlling the integration time of each pixel of a sensor array, and providing a corresponding scaling factor for the electrical output of each individual pixel during the frame time. The integration time of each pixel is controlled as a function of light intensity received by each individual pixel, by resetting the pixel after a predetermined threshold for the output signal, has been reached.
Abstract:
A Fourier Transform Infrared (FTIR) Spectrometer integrated in a CMOS technology on a Silicon-on-Insulator (SOI) wafer is disclosed. The present invention is fully integrated into a compact, miniaturized, low cost, CMOS fabrication compatible chip. The present invention may be operated in various infrared regions ranging from 1.1 μm to 15 μm or it can cover the full spectrum from 1.1 μm to 15 μm all at once.The CMOS-FTIR spectrometer disclosed herein has high spectral resolution, no movable parts, no lenses, is compact, not prone to damage in harsh external conditions and can be fabricated with a standard CMOS technology, allowing the mass production of FTIR spectrometers. The fully integrated CMOS-FTIR spectrometer is suitable for battery operation; any and all functionality can be integrated on a chip with standard CMOS technology. The disclosed invention for the FTIR spectrometer may also be adapted for a CMOS-Raman spectrometer.
Abstract:
An orally administrable implement for expanding in a stomach of an animal, including a mammal, to fill a space in the stomach, is provided for weight control. The implement includes: a fluid-permeable expandable container having a first dimension and a second dimension; and a plurality of clusters comprising a swellable material contained within the container and capable of swelling when contacted with a fluid; whereby when the implement is ingested, the fluid in the stomach enters the container causing the clusters therein to swell and the container to expand from the first dimension to the second dimension.
Abstract:
A real-time digital cytometer on a chip system utilizing a custom near field CMOS active pixel intelligent sensor that is flip-chip attached to a fluidic microchannel etched in a thin glass substrate. The CMOS active pixel sensor, fabricated using a 0.18 micron process, is a mixed signal chip comprising a sixteen pixel linear adaptive spatial filter coupled to a digital serial interface. This near field hybrid digital sensor topology obviates the need for both high resolution analog to digital conversion as well as conventional microscopy for the realization of real time optical cytometry. The custom sensor based design approach affords efficient scaling into a tiled multi-channel sensing configuration. The complete system, supported by a handheld graphical user interface and control module, demonstrates a viable micro total analysis sub-system for sample preparation and analysis which can support a wide range of applications ranging from cytometry to cell growth kinetics and analysis and various forms of fluid and droplet metering on an integrated and compact microfluidic platform.
Abstract:
Designs and operational methods to increase the dynamic range of image sensors and APS devices in particular by achieving more than one integration times for each pixel thereof. An APS system with more than one column-parallel signal chains for readout are described for maintaining a high frame rate in readout. Each active pixel is sampled for multiple times during a single frame readout, thus resulting in multiple integration times. The operation methods can also be used to obtain multiple integration times for each pixel with an APS design having a single column-parallel signal chain for readout. Furthermore, analog-to-digital conversion of high speed and high resolution can be implemented.