Abstract:
Wireless internet in the in-vehicle environment is an evolving reality that reflects the gradual convergence of wireless and internet technologies. The present invention provides an application layer system that makes wireless internet access adaptive to dynamically changing heterogeneous network environments, by stressing carrier-independence and access transparency. To achieve these objectives, the present invention provides the following features: HTTP session continuity and automatic HTTP failure recovery; network environment awareness and application-level preemptive handoff based on bandwidth capacity.
Abstract:
The present invention presents an architecture to dynamically measure and estimate the throughput perceived by a user during a connection in real-time in a wireless network system. The architecture system design of the present invention allows for information gathering independent of the mathematical models used and takes into account security settings in the network hosts. The present invention also sets forth a number of throughput estimators (TEs) that can be used within the architecture to gather the information needed to carry out the throughput estimation calculations. The throughput estimations can then be used for download rate control, QoS, load balancing, etc. The present invention also provides algorithms to calculate the real-time throughput experienced by a user flow.
Abstract:
A system and method for providing multi-dimensional context-aware adaptation in vehicular networks is disclosed. The system comprises a collection module, a context resolving module, a parameter determination module and a distribution module. The collection module collects context data describing a context in a communication environment. The context resolving module resolves the context data to a matching historical context and determines one or more historical context groups associated with the matching historical context. The parameter determination module determines a subset of operating parameters from the one or more historical context groups. The distribution module distributes the subset of operating parameters to a network stack communication module.
Abstract:
In a mobile radio communication system of the cognitive radio method, a database device has a use state table indicating a probability that each frequency band is used for each period of time and for each location. An on-vehicle terminal acquires a frequency band having the highest probability that the band is empty at the current time and the current location according to the use state table and performs a radio communication by using the frequency band. The use state table is preferably created by a statistical process using the database device which acquires the use states of frequency bands of various locations and times by using respective vehicles as probe cars. Thus, it is possible to detect the frequency of the empty state in a short time.
Abstract:
Wireless internet in the in-vehicle environment is an evolving reality that reflects the gradual convergence of wireless and internet technologies. The present invention provides an application layer system that makes wireless internet access adaptive to dynamically changing heterogeneous network environments, by stressing carrier-independence and access transparency. To achieve these objectives, the present invention provides the following features: HTTP session continuity and automatic HTTP failure recovery; network environment awareness and application-level preemptive handoff based on bandwidth capacity.
Abstract:
Wireless internet in the in-vehicle environment is an evolving reality that reflects the gradual convergence of wireless and internet technologies. The present invention provides an application layer system that makes wireless internet access adaptive to dynamically changing heterogeneous network environments, by stressing carrier-independence and access transparency. To achieve these objectives, the present invention provides the following features: HTTP session continuity and automatic HTTP failure recovery; network environment awareness and application-level preemptive handoff based on bandwidth capacity.
Abstract:
As multicast services become prevalent, it is important to find viable solutions for multicasting to mobile nodes. This problem is complicated by the necessity to support multicast services over existing backbone and access networks that may have varying network and/or link layer multicasting capabilities. While most work on supporting multicast services focuses on the IP layer solution, the present invention presents an application-layer approach for providing multicast services to mobile users traversing networks with diverse multicast capabilities. The present invention places multicast proxies in the backbone and access networks to support several multicast-related functions at the application layer including the creation of virtual networks for dynamically tunneling through non-multicast-capable networks.
Abstract:
A system and method for providing multi-dimensional context-aware adaptation in vehicular networks is disclosed. The system comprises a collection module, a context resolving module, a parameter determination module and a distribution module. The collection module collects context data describing a context in a communication environment. The context resolving module resolves the context data to a matching historical context and determines one or more historical context groups associated with the matching historical context. The parameter determination module determines a subset of operating parameters from the one or more historical context groups. The distribution module distributes the subset of operating parameters to a network stack communication module.
Abstract:
An aspect of the present invention is a method for routing content information to a mobile user or client application. The method preferably comprises re-directing a user request to one or more gateway servers provided via an overlay network. In another aspect, the present invention is an apparatus that includes a proxy service that intercepts content information requests to the Internet and re-directs the content requests to an overlay. Another aspect of the present invention comprises a location-based Uniform Resource Locator that includes a protocol semantic portion and a location-based resolver address portion that identifies one or more resources on a network based on the geographical location of the resources.
Abstract:
The present invention presents an architecture to dynamically measure and estimate the throughput perceived by a user during a connection in real-time in a wireless network system. The architecture system design of the present invention allows for information gathering independent of the mathematical models used and takes into account security settings in the network hosts. The present invention also sets forth a number of throughput estimators (TEs) that can be used within the architecture to gather the information needed to carry out the throughput estimation calculations. The throughput estimations can then be used for download rate control, QoS, load balancing, etc. The present invention also provides algorithms to calculate the real-time throughput experienced by a user flow.