Abstract:
Methods of operating fuel injectors with intensified fuel storage. At least one storage volume is provided in the intensifier type fuel injector, with a check valve between the intensifier and the needle chamber and storage volume preventing loss of injection pressure while the intensifier plunger cylinder is refilling with fuel. Using the check valve to isolate the storage volume from the intensifier to reduce and control pressure spikes that effect injector operation. This provides very efficient injector operation, particularly at low engine loads, by eliminating the wasted energy of compressing, venting and recompressing fuel for injection and reducing and controlling pressure spikes that effect injector operation.
Abstract:
A piston engine is operated to close an exhaust valve, close an intake valve, and inject ammonia into a cylinder at a start of a compression motion of a piston before substantial compression occurs. The ammonia may be injected into the cylinder as a liquid. The ammonia may be pressurized sufficiently to prevent boiling of the ammonia at a temperature of the engine. A mixture of ammonia and air may be compressed sufficiently to obtain compression ignition of the ammonia. An amount of air in the cylinder during compression may be limited to limit combustion temperatures to below the temperatures for formation of NOx. Air may be injected into the cylinder after ignition of the ammonia and during combustion. The exhaust valve may be closed at a time to trap a predetermined amount of exhaust gas in the cylinder.
Abstract:
Hydraulic internal combustion engines having at least one combustion piston not mechanically connected to a crankshaft or any other combustion piston, but instead acting on hydraulic plungers through valving that is electronically controlled to control the piston position and velocity, typically through an intake stroke, a compression stroke, a combustion or power stroke and an exhaust stroke. Electronically controlled fuel injection and electronically controlled engine valves provided great flexibility in the operating cycles that may be used, with the engine pumping hydraulic fluid to a high pressure accumulator for use in hydraulic motors or other hydraulic equipment. Embodiments using high pressure air injection to sustain combustion are also disclosed.
Abstract:
Multiple intensifier injectors with positive needle control and methods of injection that reduce injector energy consumption. The intensifiers are disposed about the axis of the injectors, leaving the center free for direct needle control down the center of the injector. Also disclosed is a boost system, increasing the needle closing velocity but without adding mass to the needle when finally closing. Direct needle control allows maintaining injection pressure on the fuel between injection events if the control system determines that enough fuel has been pressurized for the next injection, thus saving substantial energy when operating an engine at less than maximum power, by not venting and re-pressurizing on every injection event.
Abstract:
Compression ignition engines and methods of the type wherein the engines operate with one cylinder used as a compression cylinder and a second cylinder used as a combustion cylinder. The engines have all cylinders configured so as to be able to operate as a compression cylinder or a combustion cylinder. In the method of operation, a cylinder may switch its operation between being a compression cylinder and then operate a combustion cylinder. Switching the operation between compression and combustion operation results in an even temperature distribution within the engine, and eliminates the need for special cooling requirements, facilitating retrofit of existing engines. Also use of an air storage tank allows all cylinders to operate as combustion cylinders for short bursts of power. Various other features are disclosed.
Abstract:
High performance, low emission engines, multiple cylinder engines and operating methods based on compression ignition of a combustion chamber charge. In accordance with the methods, fuel is injected into the combustion chamber after the exhaust valve closes, and air is injected into the combustion cylinder before the end of the compression stroke in an amount to limit the temperature after ignition to less than the temperature at which NOX forms. After ignition and during the power stroke, more air is injected into the combustion chamber to sustain combustion until all fuel is consumed, the air being injected so as to again limit the combustion temperatures to less than the temperature at which NOX forms. The air injected during the compression stroke is injected at substantially the same combustion chamber pressure as the air injected during the power stroke, so that air may efficiently be injected from the same pressurized source. The fuel injected into the combustion chamber may be all the fuel needed, or additional fuel may be injected during the power stoke.
Abstract:
Pressure balanced spool poppet valves with printed actuator coils minimize valve leakage and facilitate efficient manufacturing and reliable operation. The spool poppet valves may be configured like a conventional spool valve, but further include a poppet valve at one end of the spool to proved much better sealing when the poppet valve is closed. Various features are disclosed, including pressure balancing for high pressure operation. The printed actuator coils for the spool poppet valves are formed by the interconnection of conductive coils on each of multiple layers of a multiple layer printed circuit board, which circuit board may have a hole there through for accommodation of mechanical and/or magnet requirements, and may include similar printed actuator coils for one or more additional spool poppet valves as well as electronic devices associated with the operation thereof. The spool poppet valves may be advantageously constructed without printed actuator coils, and the printed actuator coils may be advantageously used in actuators of other designs.
Abstract:
Fuel injectors with intensified fuel storage and methods of operating an engine therewith. At least one storage cavity is provided in the intensifier type fuel injector, with a check valve between the intensifier and the needle chamber and storage cavity preventing loss of injection pressure while the intensifier plunger cylinder is refilling with fuel. This provides very efficient injector operation, particularly at low engine loads, by eliminating the wasted energy of compressing, venting and recompressing fuel for injection. Various injector designs and methods of operating the same in an engine are disclosed.
Abstract:
Fluid sensing shut-off devices with timer and methods of operation to shut off fluid flow if a primary shutoff valve sticks in the on condition. An embodiment is disclosed using a microphone to sense fluid flow, with a microprocessor periodically awakening from a sleep mode to power the sensor and determine if there is flow. If there is flow, the microprocessor times flow, and if flow is not shut off within a predetermined length of time, the microprocessor shuts off the valve. The valve itself normally held in a magnetically latched, valve open state, but may be unlatched by a current pulse to close the valve. Various embodiments and applications are disclosed.
Abstract:
Hydraulic valve actuation systems and methods to provide variable lift for one or more engine air valves by way of a variable position hard stop. Various embodiments are disclosed, including embodiments controlling lift by providing a choice of two different fixed stops, three different fixed stops, stops continuously variable throughout a range of lifts, and a fixed stop and stops continuously variable throughout a range of lifts. The valves controlled by a variable position hard stop may be a single engine intake or exhaust valve, or multiple valves of any number, and of either intake or exhaust valves or both, or of one intake or one exhaust valve for one or more cylinders in engines having more than one intake or exhaust valve per cylinder. Dashpot deceleration of engine valve velocity on opening to the hard stop and on engine valve closure is disclosed, as are other aspects and embodiments of the invention.