Abstract:
A hydraulic powertrain system is disclosed, in which one possible embodiment provides at least one combustion cylinder, at least one cylinder head, at least one piston. During combustion, pressure moves the piston downwards, where it creates motion in an attached hydraulic cylinder. Fluid in the hydraulic cylinder is then pressurized, where it exits the hydraulic cylinder and is directed to a fluid turbine, where work is extracted from the pressurized fluid.
Abstract:
A free piston engine is configured with a pair of opposed engine cylinders located on opposite sides of a fluid pumping assembly. An inner piston assembly includes a pair of inner pistons, one each operatively located in a respective one of the engine cylinders, with a push rod connected between the inner pistons. The push rod extends through an inner pumping chamber in the fluid pumping assembly and forms a fluid plunger within this chamber. An outer piston assembly includes a pair of pistons, one each operatively located in a respective one of the engine cylinders, with at least one pull rod connected between the outer pistons. The pull rod extends through an outer pumping chamber in the fluid pumping assembly and forms a fluid plunger within this chamber.
Abstract:
Hydraulic internal combustion engines having at least one combustion piston not mechanically connected to a crankshaft or any other combustion piston, but instead acting on hydraulic plungers through valving that is electronically controlled to control the piston position and velocity, typically through an intake stroke, a compression stroke, a combustion or power stroke and an exhaust stroke. Electronically controlled fuel injection and electronically controlled engine valves provided great flexibility in the operating cycles that may be used, with the engine pumping hydraulic fluid to a high pressure accumulator for use in hydraulic motors or other hydraulic equipment. Embodiments using high pressure air injection to sustain combustion are also disclosed.
Abstract:
A valveless, pneumatic motor including a cylinder within which a hammer piston reciprocates and a buffer ring fixedly secured within the cylinder. A source of motive fluid under pressure cooperates with the buffer ring which through supply porting provides pressurized motive fluid alternately to opposed faces of the piston head. Intake ports are formed within the piston stem and adapted to cooperate intermittently with the buffer ring supply porting to provide motive fluid to the piston interior wherein an axial bore transmits the fluid along the stem toward the piston head and discharge porting delivers the motive fluid to the forward face of the piston head thereby urging the piston rearwardly. A reduced diameter portion of the piston stem then comes into communication with the buffer ring supply porting and permits the motive fluid to impinge directly on the rearward face of the piston head without passage through the piston to urge the piston forwardly. Specific porting arrangements and mechanical relationships are disclosed.
Abstract:
A hydraulic powertrain system is disclosed, in which one possible embodiment provides at least one combustion cylinder, at least one cylinder head, at least one piston. During combustion, pressure moves the piston downwards, where it creates motion in an attached hydraulic cylinder. Fluid in the hydraulic cylinder is then pressurized, where it exits the hydraulic cylinder and is directed to a fluid turbine, where work is extracted from the pressurized fluid.
Abstract:
The invention relates to an ammonia generator (2, 66, 68), in particular for mobile applications, a vehicle (62) with such an ammonia generator (2, 66, 68) and a method for generating ammonia from a waste gas of a combustion process. It is proposed that the waste gas originates from a free-piston engine (2) which is operated with a fuel.
Abstract:
Hydraulic internal combustion engines having at least one combustion piston not mechanically connected to a crankshaft or any other combustion piston, but instead acting on hydraulic plungers through valving that is electronically controlled to control the piston position and velocity, typically through an intake stroke, a compression stroke, a combustion or power stroke and an exhaust stroke. Electronically controlled fuel injection and electronically controlled engine valves provided great flexibility in the operating cycles that may be used, with the engine pumping hydraulic fluid to a high pressure accumulator for use in hydraulic motors or other hydraulic equipment. Embodiments using high pressure air injection to sustain combustion are also disclosed.
Abstract:
An expansion engine fixed to a flange so as to extend into a vacuum tank comprises an outer cylinder inserted in said vacuum tank and having its proximal end opening into the atmosphere, an inner cylinder removably inserted from its distal side into said outer cylinder through said opening, a piston capable of reciprocating inside said inner cylinder and having an exhaust valve, an intake valve mechanism disposed on the distal side of said inner cylinder and capable of moving together with said inner cylinder, and O-rings disposed between said inner and outer cylinders to seal the interface between said cylinders airtightly.