Abstract:
Disclosed and described herein are systems and methods of energy generation from fabric electrochemistry. An electrical cell is created when electrodes (cathodes and anodes) are ‘printed’ on or otherwise embedded into fabrics to generate DC power when moistened by a conductive bodily liquid such as sweat, wound, fluid, etc. The latter acts, in turn, as the cell's electrolyte. A singular piece of fabric can be configured into multiple cells by dividing regions of the fabric with hydrophobic barriers and having at least one anode-cathode set in each region. Flexible inter-connections between the cells can be used to scale the generated power, per the application requirements.
Abstract:
Disclosed herein is a membrane separation apparatus with reduced concentration polarization and enhanced permeate flux. Also disclosed is a method for separating permeate from retentate in a fluid using the disclosed membrane separation apparatus. Also disclosed is a method for inhibiting or preventing concentration polarization of a permeable membrane used in membrane separation.
Abstract:
Antimicrobial dressings for prevention and mitigation of biofilm and bacterial infection by an applied electric current are provided. Methods of making the dressings and methods of applying an electric current to promote the wound healing process are also disclosed.
Abstract:
An apparatus for reducing aerodynamic drag on a tractor-trailer includes a panel configured to extend along a length of the trailer, the panel having first and second ends and being contoured along a lengthwise direction of the panel from the first end to the second end. Another apparatus includes a panel including a base and an array of rib-like protrusions extending outwardly from the base. Another apparatus includes a panel including an inner portion and an outer portion coupled to each other along first and second seams to define a cavity and including an air inlet for allowing air influx into the cavity from free-stream air flow during transit of the tractor-trailer to transition the panel from a retracted state to a deployed state. When in the deployed state, the panel is configured to alter an external topography of the tractor-trailer.
Abstract:
An apparatus for reducing aerodynamic drag on a tractor-trailer includes a panel configured to extend along a length of the trailer, the panel having first and second ends and being contoured along a lengthwise direction of the panel from the first end to the second end. Another apparatus includes a panel including a base and an array of rib-like protrusions extending outwardly from the base. Another apparatus includes a panel including an inner portion and an outer portion coupled to each other along first and second seams to define a cavity and including an air inlet for allowing air influx into the cavity from free-stream air flow during transit of the tractor-trailer to transition the panel from a retracted state to a deployed state. When in the deployed state, the panel is configured to alter an external topography of the tractor-trailer.