Abstract:
The present disclosure discloses an afterglow detection device and an afterglow detection method. The afterglow detection device comprises: an X-ray tube for emitting an X-ray beam; a first reading circuit for receiving a first detected signal from a to-be-detected detector to form and output a first measurement signal according to the first detected signal, the to-be-detected detector being connected to the first reading circuit and disposed on a beam-out side of the X-ray tube to receive radiation of the X-ray beam and outputting the first detected signal to the first reading circuit at the time of detection; a residual ray detector disposed on a beam-out side of the X-ray tube; a second reading circuit connected to the residual ray detector for receiving a second detected signal from the residual ray detector to form and output a second measurement signal according to the second detected signal.
Abstract:
The present disclosure is directed to a low cost sintering process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics, comprising uniaxial hot pressing primary sintering and hot isostatic pressing secondary sintering.
Abstract translation:本公开涉及用于制备具有通式Gd 2 O 2 S(称为GOS,闪烁陶瓷)的钆硫氧化物的低成本烧结方法,其包括单轴热压一次烧结和热等静压二次烧结。
Abstract:
The present disclosure is directed to a low cost sintering process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics, comprising uniaxial hot pressing primary sintering and hot isostatic pressing secondary sintering.
Abstract:
Methods and apparatuses for measuring an effective atomic number of an object are disclosed. The apparatus includes: a ray source configured to product a first X-ray beam having a first energy and a second X-ray beam having a second energy; a Cherenkov detector configured to receive the first X-ray beam and the second X-ray beam that pass through an object under detection, and to generate a first detection value and a second detection value; and a data processing device configured to obtain an effective atomic number of the object based on the first detection value and the second detection value. The Cherenkov detector can eliminate disturbance of X-rays below certain energy threshold with respect to the object identification, and thus accuracy can be improved for object identification.
Abstract:
Methods and apparatuses for measuring an effective atomic number of an object are disclosed. The apparatus includes: a ray source configured to product a first X-ray beam having a first energy and a second X-ray beam having a second energy; a Cherenkov detector configured to receive the first X-ray beam and the second X-ray beam that pass through an object under detection, and to generate a first detection value and a second detection value; and a data processing device configured to obtain an effective atomic number of the object based on the first detection value and the second detection value. The Cherenkov detector can eliminate disturbance of X-rays below certain energy threshold with respect to the object identification, and thus accuracy can be improved for object identification.
Abstract:
Embodiments of the present disclosure disclose a backside processing method for a back-illuminated photoelectric device. The backside processing method includes: mechanically thinning the back-illuminated photoelectric device such that a thickness of the back-illuminated photoelectric device reaches a first desired thickness; and chemically thinning and chemically polishing the back side of the mechanically thinned back-illuminated photoelectric device by using a nitric acid solution and a hydrofluoric acid solution such that the thickness of the mechanically thinned back-illuminated photoelectric device reaches a second desired thickness and a surface roughness of the back side of the back-illuminated photoelectric device reaches a desired surface roughness.
Abstract:
A radiation detector assembly and a method of manufacturing the same are provided. The radiation detector assembly includes a base and an outer encapsulation layer. The base includes a scintillator having a light-entering surface and a light-exiting surface on both ends thereof, respectively; a reflection layer provided on the light-entering surface and an outer peripheral surface of the scintillator; a photosensor comprising a photosensitive surface and an encapsulation housing, the photosensitive surface is coupled to the light-exiting surface via an optical adhesive; and an inner encapsulation layer adhered to an outer surface of the reflection layer and hermetically encapsulates a coupling portion where the scintillator and the photosensor connected with each other. The outer encapsulation layer is provided on the outer surface of the base.
Abstract:
A method for processing a ceramic scintillator array, characterized in that, comprising the following steps: (a) forming, in a first direction, a predetermined number of straight first-direction through-cuts which are parallel to each other and spaced from each other on a scintillator substrate by using laser; (b) adequately filling the first-direction through-cuts with an adhesive and solidifying the adhesive; (c) forming, in a second direction. a predetermined number of second direction through-cuts which are parallel to each other at a predetermined interval on the scintillator substrate by using laser, wherein the second direction is perpendicular to the first direction; and (d) adequately filling the second direction through-cuts with the adhesive and solidifying the adhesive bond.
Abstract:
The present disclosure is directed to a rapid process for the preparation of gadolinium oxysulfide having a general formula of Gd2O2S, referred to as GOS, scintillation ceramics by using the combination of spark plasma primary sintering (SPS) and hot isostatic pressing secondary sintering.
Abstract:
The present disclosure provides a dual-energy detection apparatus and method. The dual-energy detection apparatus includes an X-ray source configured to send a first X-ray beam to an object to be measured; a scintillation detector configured to work in an integration mode, and receive a second X-ray beam penetrating through the object to be measured to generate a first electrical signal; a Cherenkov detector configured to be located behind the scintillation detector, work in a counting mode, and receive a third X-ray beam penetrating through the scintillation detector to generate a second electrical signal; and a processor configured to output image, thickness and material information of the object to be measured according to the first electrical signal and the second electrical signal. The dual-energy detection method provided by the present disclosure may acquire an image of the object to be measured that is clearer and contains more information.