摘要:
A method for depositing a film in a substrate processing system includes arranging a substrate on a pedestal in a processing chamber, heating the substrate to a temperature within a predetermined temperature range, and supplying a gas mixture to the processing chamber for a predetermined period to deposit the film on the substrate, wherein the gas mixture includes a first precursor gas, ammonia gas and diborane gas.
摘要:
The method and apparatus disclosed herein relate to preparing a stack structure for an electronic device on a semiconductor substrate. A particularly beneficial application of the method is in reduction of internal stress in a stack containing multiple layers of silicon. Typically, though not necessarily, the internal stress is a compressive stress, which often manifests as wafer bow. In some embodiments, the method reduces the internal stress of a work piece by depositing phosphorus doped silicon layers having low internal compressive stress or even tensile stress. The method and apparatus disclosed herein can be used to reduce compressive bow in stacks containing silicon.
摘要:
A method for depositing a film in a substrate processing system includes arranging a substrate on a pedestal in a processing chamber, heating the substrate to a temperature within a predetermined temperature range, and supplying a gas mixture to the processing chamber for a predetermined period to deposit the film on the substrate, wherein the gas mixture includes a first precursor gas, ammonia gas and diborane gas.
摘要:
An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.
摘要:
An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.
摘要:
An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, an apparatus configured to deposit a plurality of film layers having different compositions on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a process station reactant feed fluidically coupled to a gas inlet of the process station, and fluidically coupled to an inert gas delivery line, a first reactant mixture gas delivery line and a second reactant mixture gas delivery line such that the first reactant gas mixture and the second reactant gas mixture can be introduced sequentially into the process station reactant feed, and supplied via a shared path to the process station.
摘要:
An apparatus for depositing film stacks in-situ (i.e., without a vacuum break or air exposure) are described. In one example, a plasma-enhanced chemical vapor deposition apparatus configured to deposit a plurality of film layers on a substrate without exposing the substrate to a vacuum break between film deposition phases, is provided. The apparatus includes a process chamber, a plasma source and a controller configured to control the plasma source to generate reactant radicals using a particular reactant gas mixture during the particular deposition phase, and sustain the plasma during a transition from the particular reactant gas mixture supplied during the particular deposition phase to a different reactant gas mixture supplied during a different deposition phase.
摘要:
The method and apparatus disclosed herein relate to preparing a stack structure for an electronic device on a semiconductor substrate. A particularly beneficial application of the method is in reduction of internal stress in a stack containing multiple layers of silicon. Typically, though not necessarily, the internal stress is a compressive stress, which often manifests as wafer bow. In some embodiments, the method reduces the internal stress of a work piece by depositing phosphorus doped silicon layers having low internal compressive stress or even tensile stress. The method and apparatus disclosed herein can be used to reduce compressive bow in stacks containing silicon.
摘要:
Methods of forming a film stack may include the plasma accelerated deposition of a silicon nitride film formed from the reaction of nitrogen containing precursor with silicon containing precursor, the plasma accelerated substantial elimination of silicon containing precursor from the processing chamber, the plasma accelerated deposition of a silicon oxide film atop the silicon nitride film formed from the reaction of silicon containing precursor with oxidant, and the plasma accelerated substantial elimination of oxidant from the processing chamber. Process station apparatuses for forming a film stack of silicon nitride and silicon oxide films may include a processing chamber, one or more gas delivery lines, one or more RF generators, and a system controller having machine-readable media with instructions for operating the one or more gas delivery lines, and the one or more RF generators.
摘要:
Smooth silicon films having low compressive stress and smooth tensile silicon films are deposited by plasma enhanced chemical vapor deposition (PECVD) using a process gas comprising a silicon-containing precursor (e.g., silane), argon, and a second gas, such as helium, hydrogen, or a combination of helium and hydrogen. Doped smooth silicon films and smooth silicon germanium films can be obtained by adding a source of dopant or a germanium-containing precursor to the process gas. In some embodiments dual frequency plasma comprising high frequency (HF) and low frequency (LF) components is used during deposition, resulting in improved film roughness. The films are characterized by roughness (Ra) of less than about 7 Å, such as less than about 5 Å as measured by atomic force microscopy (AFM), and a compressive stress of less than about 500 MPa in absolute value. In some embodiments smooth tensile silicon films are obtained.