Abstract:
A gamma curve and a color coordinate adjusting apparatus and method are provided. The method includes: receiving a display image and generating a color analyzing data, wherein the color analyzing data comprises a plurality of stimulus values respectively corresponding to a plurality of driven gray levels; receiving a target color coordinate value and a target luminance value; operating a searching operation according to a setting range on the color analyzing data, calculating a simulation color coordinate value and a simulation luminance value according to the stimulus values of each of the driven voltage levels, and obtaining a plurality of adjusted node information for the gamma curve and the color coordinate according to a difference between the target color coordinate value and the simulation color coordinate value and a difference between the target luminance value and the simulation luminance value corresponding to each of the driven voltage levels.
Abstract:
A data transmission system is utilized in a Mobile Industry Processor Interface (MIPI). A master device includes a control module for generating a control signal according to a feedback signal. A packet encoding module is coupled to the control module for encoding an original packet to be a transmission packet according to the original packet and the control signal to process a transmission operation. A slave device includes a packet decoding module for decoding, the transmission packet to be the original packet or a related display device signal corresponding to the original packet to a display device. A feedback module is coupled to the packet decoding module for generating the feedback signal to the control module of the master device according to a decoding condition of the control module, so as to switch a transmission mode of the transmission operation.
Abstract:
A drive circuit applicable to a display device includes a first signal path and a second signal path. The first signal path, configured to receive and transmit image data, includes a compression unit configured to perform a compression procedure on the image data to generate compression data; a storage unit configured to store the compression data; and a de-compression unit configured to perform a de-compression procedure on the compression data to recover the image data. The second signal path is configured to transmit the image data to the storage unit so as to bypass the compression unit, and transmit the image data received from the storage unit to a display unit so as to bypass the de-compression unit when the image data is not transmitted by the first signal path. The received image data is passed through the first signal path or the second signal path depending upon its characteristics.
Abstract:
A data transmission system is utilized in a Mobile Industry Processor Interface (MIPI). A master device includes a control module for generating a control signal according to a feedback signal. A packet encoding module is coupled to the control module for encoding an original packet to be a transmission packet according to the original packet and the control signal to process a transmission operation. A slave device includes a packet decoding module for decoding the transmission packet to be the original packet or a related display device signal corresponding to the original packet to a display device. A feedback module is coupled to the packet decoding module for generating the feedback signal to the control module of the master device according to a decoding condition of the control module, so as to switch a transmission mode of the transmission operation.
Abstract:
An optical fingerprint sensing module includes an image sensing device, a light source and a light shielding structure. The image sensing device is configured to sense light transmitted from a fingerprint of a finger on a display panel. The image sensing device includes a light sensing plane having a first geometric center. The light source includes a light emitting plane having a second geometric center. The first geometric center is separated from the second geometric center by a distance from 2 mm to 20 mm. The light shielding structure is disposed between the image sensing device and the light source. In examples, the optical fingerprint sensing module further includes a field angle controller to constrain light pass there through with a field angle of 5-60 degrees. A display device including an optical fingerprint sensing module is disclosed herein as well.
Abstract:
A drive circuit applicable to a display device includes a first signal path and a second signal path. The first signal path, configured to receive image data and transmit the image data in a first operation mode, includes a compression unit, a storage unit and a de-compression unit. In the first operation mode, the compression unit performs a compression procedure on the image data to generate compression data, the storage unit stores the compression data, and the de-compression unit receives the compression data and performs a de-compression procedure on the compression data to recover the image data. The second signal path is configured to receive image data, transmit the image data to the storage unit so as to bypass the compression unit, and transmit the image data received from the storage unit to a display unit so as to bypass the decompression unit in a second operation mode.
Abstract:
A display apparatus, a driving chip, and an error message transmission method are provided. The driving chip is coupled to a system end to drive a display panel. The driving chip includes a display data receiving interface and an error detector. The display data receiving interface receives a display data stream from the system end. The error detector is coupled to the display data receiving interface and detects at least one error message generated when the display data receiving interface receives the display data stream. The driving chip has a plurality of output pins, and the driving chip transmits the error message to the system end through at least one idle pin among the output pins.
Abstract:
An electronic circuit adapted to drive a display panel including touch sensors and fingerprint sensors is provided. The electronic circuit includes a first circuit, a second circuit and a switch circuit. The first circuit is configured to generate display driving signals for driving data lines of the display panel. The second circuit is configured to receive fingerprint sensing signals corresponding to a fingerprint image from fingerprint sensing lines of the display panel. The switch circuit includes a plurality of first terminals and a plurality of second terminals. The first terminals are coupled to the first circuit and the second circuit. The second terminals are configurable to be coupled to the display panel via a plurality of first pins of the electronic circuit. Each of the first pins is configurable to be coupled to a corresponding data line and a corresponding fingerprint sensing line of the display panel.
Abstract:
A drive circuit applicable to a display device includes a first signal path and a second signal path. The first signal path, configured to receive image data and transmit the image data in a first operation mode, includes a compression unit, a storage unit and a de-compression unit. In the first operation mode, the compression unit performs a compression procedure on the image data to generate compression data, the storage unit stores the compression data, and the de-compression unit receives the compression data and performs a de-compression procedure on the compression data to recover the image data. The second signal path is configured to receive image data, transmit the image data to the storage unit so as to bypass the compression unit, and transmit the image data received from the storage unit to a display unit so as to bypass the decompression unit in a second operation mode.
Abstract:
A data compression system for a liquid crystal display (LCD) includes a host and a drive circuit. The host is utilized for outputting image data in a first data format or a second data format according to an operation mode of the LCD. The drive circuit includes a bypass path, for transmitting the image data according to the operation mode; a compression unit, coupled to the host, for receiving the image data and performing a compression procedure on the image data to generate a compression data according to the operation mode; a storage unit, coupled to the compression unit, for storing the compression data and the image data; a de-compression unit, coupled to the storage unit, for receiving the compression data and performing a de-compression procedure on the compression data to recover the image data according to the operation mode; and a display unit, for displaying the image data.