Abstract:
An optical measurement method and system are presented for imaging two target structures in two parallel layers, respectively, of a sample, to enable determination of a registration between the two target structures along two mutually perpendicular axes of the layer. The sample is illuminated with incident radiation to produce a radiation response of the sample. The radiation response is collected by an objective lens arrangement, and the collected radiation response is split into two spatially separated radiation components. The split radiation components are directed towards at least one imaging plane along different optical channels characterized by optical paths of different lengths, respectively. The two split radiation components are detected in said at least one imaging plane, and two image parts are thereby acquired, each image part containing images of the two target structures. This enables determination of the relative distance between the two target structures.
Abstract:
A test structure is presented to be formed on a patterned structure and to be used for controlling a CMP process applied to the patterned structure, which has a pattern area formed by spaced-apart metal-containing regions representative of real features of the patterned structure. The test structure thus undergoes the same CMP processing as the pattern area. The test structure comprises at least one pattern zone in the form of a metal area with at least one region included in the metal area and made of a material relatively transparent with respect to incident light, as compared to that of the metal.
Abstract:
An imaging method and system are presented for detecting the topography of a sample surface. Illuminating light is directed to the sample by sequentially passing the illuminating light through a grating and an objective lens arrangement The grating has a pattern formed by spaced-apart transparent regions spaced by non-transparent regions, and is specifically oriented with respect to the optical axis of the objective lens arrangement. Light, specularly reflected from the sample, is collected by the same objective lens arrangement and is directed to an imaging detector through the same grating, thereby enabling creation of an image of the illuminated sample indicative of the topography of the sample surface.
Abstract:
A method and system are presented for use in controlling a process of material removal from the surface of a patterned structure, by measuring at least one of residue, erosion, dishing and corrosion effects in the structure induced by this process. The structure is imaged utilizing phase modulation of light reflected from the structure, and a phase map of the structure is thereby obtained. This phase map is analyzed and data indicative of light reflective properties of layer stacks of the structure is utilized to determine a phase difference between light reflected from a selected measured site and at least one reference site spaced-apart from the selected site. The phase difference is thus indicative of the measured effect.
Abstract:
A method is presented for optical control of the quality of a process of chemical mechanical planarization (CMP) performed by a polishing tool applied to an article having a patterned area. The article contains a plurality of stacks each formed by a plurality of different layers, thereby defining a pattern in the form of spaced-apart metal regions. The method is capable of locating at least one of residues, erosion and dishing conditions on the article. At least one predetermined site on the article is selected for control. This at least one predetermined site is illuminated, and spectral characteristics of light components reflected from this location are detected. Data representative of the detected light components is analyzed for determining at least one parameter of the article within the at least one illuminated site.