Abstract:
In a system (apparatus and method) which employs a light absorbent material surrounded by an optically transparent matrix as a recording medium and in which the presence or absence of emission light of a specific wavelength from unity of the light absorbent material is used for optical writing and reading, the light emitted in response to reading light is condensed and spectrally diffracted and the light intensity is detected for each specific wavelength and related to recorded information.
Abstract:
A photocatalyst produced from an easily available, relatively low-cost silicon oxide material is disclosed which is capable of decomposing environmental pollutants with improved efficiency. The photocatalyst is produced by pulverizing an artificial crystal, specifically machining waste thereof, into powder particles having a particle diameter of not more than 3.0 mm and then immersing the particles into a solution containing a hydrogen fluoride for activation. Environmental pollutants such as nitrogen oxides (NOx) and harmful organic compounds can be efficiently decomposed by coming into contact with this photocatalyst while being irradiated with activation light under oxidizing conditions.
Abstract:
The present invention provides a method for forming an optical waveguide characterized by applying a paste containing a copper compound to a glass substrate containing an alkali metal as a glass component over the whole surface thereof or in a patterned form, and performing heat treatment at a temperature lower than the softening temperature of the glass substrate.The method of the invention can produce an optical waveguide without the need for a high vacuum as in the thin film deposition method and without the use of a molten salt, and is capable of dispersing Cu+ ions selectively in a glass substrate with excellent controllability.
Abstract:
A method for the formation of a zeolite membrane, which comprises preparing raw materials (a) and (b) for the synthesis of zeolite, at least one of the raw materials containing water, positioning the raw material (a) for the synthesis of zeolite so as to contact one lateral face of a porous body and the raw material (b) therefor so as to contact the other lateral face of the porous body, causing the two raw materials (a) and (b) to permeate the porous body thereby forming an interface of the two raw material in pores of the porous body, and inducing a reaction of hydrothermal synthesis at the interface, a porous body obtained by the method and having a zeolite membrane formed in the pores thereof, and a membrane used for separation and purification of gas and formed of the porous body.
Abstract:
The invention relates to a method for putting color to glass. This method includes the steps of (a) introducing a laser beam into an interferometer such that the laser beam is split into at least first and second laser beams in the interferometer and that the at least first and second laser beams come out of the interferometer; and (b) irradiating a glass with the at least first and second laser beams to write a plurality of lines simultaneously on a surface of the glass and/or in an inside of the glass.
Abstract:
Waste glass is pulverized into pulverized waste glass, and the pulverized waste glass is brought into contact with acid solution so that components such as sodium other than silicon oxide in the fine particle waste glass are dissolved in the acid solution and removed. With this, it is possible to remove components other than silicon dioxide from waste glass. Therefore it is possible to recycle waste glass so as to reuse the waste glass as a useful regenerated product that can be used for various purposes.
Abstract:
A photocatalyst produced from an easily available, relatively low-cost silicon oxide material is disclosed which is capable of decomposing environmental pollutants with improved efficiency. The photocatalyst is produced by pulverizing an artificial crystal, specifically machining waste thereof, into powder particles having a particle diameter of not more than 3.0 mm and then immersing the particles into a solution containing a hydrogen fluoride for activation. Environmental pollutants such as nitrogen oxides (NOx) and harmful organic compounds can be efficiently decomposed by coming into contact with this photocatalyst while being irradiated with activation light under oxidizing conditions.
Abstract:
The invention relates to a method for putting color to glass by irradiating a silicate glass, containing a non-bridging oxygen in its structure, with a laser light, thereby forming a non-bridging oxygen hole center therein to put a color to the glass. The invention further relates to a method for putting color to glass by irradiating a silver-ion-containing glass with a high-energy light, thereby forming silver particles in the glass through aggregation of silver ions to put a color to the glass. The invention further relates to a method for erasing color from colored glass by irradiating a colored portion of a glass with a laser light to selectively heat the colored portion by using a laser irradiation apparatus comprising (a) a laser oscillator, (b) a light modulator, (c) a condenser lens mounted on a linear translator, (d) an objective lens, and (e) a galvanometer mirror.
Abstract:
A chemically durable porous glass of which the skeleton mainly comprises SiO.sub.2 -ZrO.sub.2 system glass having a ZrO.sub.2 content of 2 or more wt %, and a process for the production of such glass.
Abstract:
Provided is an ion-conducting material, comprising, as a composition in terms of mol o, 15 to 80% of P2O5, 0 to 70% of SiO2, and 5 to 35% of R2O, which represents the total content of Li2O, Na2O, K2O, Rb2O, Cs2O, and Ag2O.