Abstract:
An apparatus configured to: determine at least one area within an audio scene represented with a spatial audio signal; obtain at least one focus/defocus information; process the spatial audio signal, based, at least partially, on the at least one focus/defocus information, to generate a processed spatial audio signal that represents a modified audio scene in which, at least in part, the at least one determined area relative to at least in part other portions of the spatial audio signal is relatively deemphasized; and output the processed spatial audio signal, wherein the modified audio scene comprises, at least the deemphasized at least one determined area relative to at least in part the other portions of the spatial audio signal according to the at least one focus/defocus information.
Abstract:
An apparatus, electronic device, method and computer program wherein the apparatus comprises: processing circuitry; and memory circuitry including computer program code, the memory circuitry and the computer program code configured to, with the processing circuitry, enable the apparatus to: detect an audio module connected to the apparatus wherein the audio module comprises a user replaceable module; determine one or more parameters of the audio module; and enable the processing of the signals used for the audio module in accordance with the determined one or more parameters.
Abstract:
A method comprising: receiving a first microphone signal from a first microphone having a first frequency response characteristic (1101, 1121) at frequencies (114) associated with wind noise; receiving a second microphone signal from a second microphone having a second frequency response characteristic (1102, 1122) at frequencies (114) associated with wind noise, wherein the first frequency response characteristic (1101, 1121) provides less gain than the second frequency response characteristic (1102, 1122) over the range of frequencies (114) associated with wind noise; and processing the first microphone signal and the second microphone signal to detect the presence of wind noise.
Abstract:
An apparatus including a body, a plurality of microphones arranged in a predetermined geometry relative to the body such that the apparatus is configured to capture sound substantially from all directions around the body to produce direction and ambience information for the captured sound, and electronics for processing signals from the plurality of microphones.
Abstract:
A method for visualizing sound audibility of external audio signals, the method including: obtaining at least one external audio signal; obtaining at least one of: an internal audio signal; and an estimate of at least one internal audio signal; estimating an external sound audibility based at least partially on the at least one external audio signal and at least one of: the internal audio signal; and the estimate an at least one internal audio signal; and generating at least one visualization based on the estimated external sound audibility, such that the visualization provides an indication of audibility of an external audio source.
Abstract:
An apparatus including circuitry configured to obtain a defocus direction; process a spatial audio signal that represents an audio scene to generate a processed spatial audio signal that represents a modified audio scene based on the defocus direction, so as to control relative deemphasis in, at least in part, a portion of the spatial audio signal in the defocus direction relative to at least in part other portions of the spatial audio signal; and output the processed spatial audio signal, wherein the modified audio scene based on the defocus direction enables the deemphasis in, at least in part, the portion of the spatial audio signal in the defocus direction relative to at least in part other portions of the spatial audio signal.
Abstract:
An apparatus for spatial audio reproduction including circuitry configured to: obtain at least one focus parameter configured to define a focus shape; process a spatial audio signal that represents an audio scene to generate a processed spatial audio signal that represents a modified audio scene, so as to control relative emphasis in, at least in part, a portion of the spatial audio signal in the focus shape relative to at least in part; other portions of the spatial audio signals outside the focus shape and output the processed spatial audio signal, wherein the modified audio scene enables the relative emphasis in, at least in part, the portion of the spatial audio signal in the focus shape relative to at least in part other portions of the spatial audio signals outside the focus shape.
Abstract:
In an example embodiment, method, apparatus and computer program product are provided. The method includes capturing an acoustic signal by a microphone of an apparatus to generate an electrical output signal. The acoustic signal is rendered in response to a source audio signal by a speaker through at least one speaker interface element of the apparatus. The electrical output signal is compared to the source audio signal in order to determine whether the electrical output signal is being affected by mechanical vibrations caused at least partially by the speaker interface element being at least partially interfered by a user. A predetermined action is further performed in the apparatus whenever it is determined that the electrical output signal is affected by the mechanical vibrations caused at least partially by the speaker interface element being at least partially interfered by the user.
Abstract:
In an example embodiment, a method, apparatus and computer program product are provided. The method includes determining one or more operating conditions of a device. A selection of a mode of operation of the device from at least a first mode and a second mode is facilitated based on the one or more operating conditions of the device. In the first mode, the device is configured to detect an operation input received from an audio source based on two or more audio sensors of the device. In the second mode, the device is configured to detect the operation input based on at least one of the two or more audio sensors and at least one non-audio sensor of the device.
Abstract:
The invention relates to a method, comprising receiving a first audio signal during an application execution in an apparatus, determining a volume level of a volume control interface for controlling a volume level of the first audio signal, controlling processing the first audio signal by at least one digital signal processing algorithm determined on the basis of the determined volume level of the volume control interface for controlling the volume level of the first audio signal, and outputting the controlled processed first audio signal at the determined volume level of the volume control interface. The invention further relates to an apparatus and a computer program product that perform the method.