Abstract:
An apparatus comprising: —a piezoelectric convertor layer; and —a proximal first piezoresistive layer being in electrical communication with, a first face of the piezoelectric convertor layer, the apparatus being configured such that when the piezoelectric convertor layer is deformed to generate charge, the proximal piezoresistive layer is configured to control the flow of charge from the piezoelectric convertor layer.
Abstract:
In accordance with an example embodiment of the present invention, a device comprising one or more porous graphene layers, the or each graphene porous layer comprising a multiplicity of pores. The device may form at least part of a flexible and/or stretchable, and or transparent electronic device.
Abstract:
An apparatus comprising:—a piezoelectric convertor layer; and—a proximal first piezoresistive layer being in electrical communication with, a first face of the piezoelectric convertor layer, the apparatus being configured such that when the piezoelectric convertor layer is deformed to generate charge, the proximal piezoresistive layer is configured to control the flow of charge from the piezoelectric convertor layer.
Abstract:
A multilayer graphene composite comprising a plurality of stacked graphene layers separated from one another by an ion gel, wherein the ion gel is intercalated between adjacent graphene layers such that ions within the ion gel are able to arrange themselves at the surfaces of the graphene layers to cause a detectable change in one or more of an electrical and optical property of the graphene layers when a gate voltage is applied to a gate electrode in proximity to the ion gel.
Abstract:
An apparatus and method, the apparatus including a sensor array including a plurality of first sensors configured to detect a first attribute; at least one second sensor configured to detect a second attribute; wherein the at least one second sensor is configured such that, in response to detecting a trigger input including the second attribute the second sensor enables a first portion of the sensor array to be powered on while a second portion of the sensor array remains powered off.
Abstract:
In accordance with an example embodiment of the present invention, a device comprising one or more porous graphene layers, the or each graphene porous layer comprising a multiplicity of pores. The device may form at least part of a flexible and/or stretchable, and or transparent electronic device.