摘要:
An automatic step variable attenuator includes: a step variable attenuator attenuating a received signal of an electric wave signal in an attenuation amount corresponding to a control signal in a step-like style; a detector disposed in parallel with the step variable attenuator for input of the received signal of the electric wave signal, and converting an electric power of the received signal thus inputted into an intensity signal representing an intensity of the received signal; and a comparator portion generating the control signal corresponding to a result of comparison for differences between the intensity signal obtained from the detector and plural threshold values, and outputting the control signal thus generated to the step variable attenuator.
摘要:
A high-frequency amplifier includes: an amplification section having a function to convert an input signal from a voltage signal into a current signal and output the current signal; output terminals; and a load circuit which is connected to the output node of the amplification section and outputs the current signal output by the amplification section to the output terminals as a voltage signal.
摘要:
An automatic step variable attenuator includes: a step variable attenuator attenuating a received signal of an electric wave signal in an attenuation amount corresponding to a control signal in a step-like style; a detector disposed in parallel with the step variable attenuator for input of the received signal of the electric wave signal, and converting an electric power of the received signal thus inputted into an intensity signal representing an intensity of the received signal; and a comparator portion generating the control signal corresponding to a result of comparison for differences between the intensity signal obtained from the detector and plural threshold values, and outputting the control signal thus generated to the step variable attenuator.
摘要:
A high-frequency amplifier includes: an amplification section having a function to convert an input signal from a voltage signal into a current signal and output the current signal; output terminals; and a load circuit which is connected to the output node of the amplification section and outputs the current signal output by the amplification section to the output terminals as a voltage signal.
摘要:
A signal processing device and signal processing method. A plurality of tuner circuits includes at least one that selectively provides a signal from among a plurality of signal bands potentially in an input signal in response to a control signal having a transition between a first state and a second state. A correction circuit corresponds to at least one of the plurality of tuner circuits, and is configured to receive the control signal and provide a corrected control signal for the tuner circuit. The corrected control signal has a gradual transition between the first state and the second state as compared to the transition between the first state and the second state in the control signal.
摘要:
The present invention relates to a method and a device for the I/Q demodulation of modulated RF signals. The I/Q demodulator (60) has a first input for the RF signal (61) to be demodulated and a second input for a RF signal (62) originating from a local oscillator (20). The demodulator (60) combines the two RF signals (61,62) to generate three output signals supplied to three power detectors. In a combination unit (70) the three power signals of the power detectors are merged in two signal branches wherein after passing an A/D converting (72) and digital processing unit (73) one signal is the I component and the other one is the Q component of the received modulated RF signal (61).
摘要:
The present invention relates to an I/Q demodulator (21) comprising a n-port structure (1,16) is provided, wherein n is an integer value of 4,5 or 6. The demodulator (21) is supplied at a first input (3) with a RF signal (2) which has to be demodulated. At a second input (5) it is supplied with a second RF signal (4). The n−2 output signals (6) are detected by power sensors (7). After low pass filtering (14) the output signals of the power sensors (7) are multiplexed by a multiplexing means (8).
摘要:
A bias voltage supply circuit of a radio-frequency amplification circuit has a constant-voltage power supply generating a constant voltage higher than the bias voltage, a rectifier transistor and a constant-current power supply supplying a constant current to the rectifier transistor. The rectifier transistor is connected between a supply point of a bias voltage connected to an input terminal of the radio-frequency amplification transistor via an element for bias supply and a power supply voltage supply line, wherein a control terminal is kept by a constant voltage that the constant-voltage power supply generates. Since descent of electric potential of the input terminal of a radio-frequency signal does not arise because of circuit composition, the radio-frequency amplification circuit has a saturation characteristic superior than a prior art.
摘要:
The universal platform for the SDR of the present invention employs the direct conversion approach with the n-port MMIC followed by reconfigurable reprogrammable devices such as DSP's or FPGA's. The universal platform is based on the linear operation of the devices. Thus, the DC offset problem may be solved. It is also possible to support very wide bandwidths compared with conventional I/Q receivers. Therefore, the present universal platform is suitable for multimode and multiband communications.
摘要:
A signal power detection apparatus in which a power value can be detected at a high accuracy with a low power consumption includes a pulse generator for generating a timing pulse whose phase is sequentially shifted corresponding to an inputted data signal, a power computing circuit for obtaining the inputted data signal based on a timing pulse and computing a power value of the inputted data signal by squaring a voltage value of the inputted data, and an averaging circuit for averaging the power value of the computed inputted data. A power can be accurately detected without using a high-speed timing clock, and a power value can be detected at a high accuracy with a low power consumption.