摘要:
A programmable digital divider operates under the control of a division controller to derive a second synthesized frequency based on a first synthesized frequency. The programmable divider divides the first synthesized signal to derive the second synthesized signal. The division amount is an integer, but varies between integer values if necessary to achieve a non-integer average division value. The majority of the noise generated by the frequency synthesizer is generated away from the centerline frequency and is easily filtered by narrowband filter. The frequency synthesizer may optionally be incorporated into a modified phase-locked loop to generate the second synthesized signal. By using a digital divider, instead of a traditional phase-locked loop, these embodiments allow for integration of the frequency synthesizer onto an integrated circuit, thereby lowering cost and improving resistance to noise spurs. This approach is particularly suited to telecommunications applications.
摘要:
A power conserving phase-locked loop achieves power savings by adding a switch which selectively enables the bias current for the charge pump associated with the phase comparator of the phase-locked loop. The switch is connected by a logic circuit to a counter that tracks the expected arrival time of a signal edge of the reference signal. Immediately prior to the arrival of the expected signal edge, the switch is enabled, thereby creating and applying the bias current to activate the charge pump in the event that a correction is needed to maintain the “lock” in the phase-locked loop. When the signal edge passes, the bias current is turned off again before the arrival of the next signal edge. This switching may result in a ten percent duty cycle in the biasing current, resulting in approximately a ninety percent power savings. The phase-locked loop may be used for a variety of applications, such as a frequency synthesizer in a receiver chain of wireless communications mobile terminals, where power consumption is a concern.
摘要:
An improved digital phase detector is provided for detecting and compensating for a cycle slip between a reference signal and a frequency source signal, the reference and frequency source signals each comprising pulses, each pulse defined by a leading edge and a trailing edge. The digital phase detector includes a detector circuit for detecting a cycle slip where two successive leading edges of one of the reference and frequency source signals are received before a leading edge of the other signal is received. An output circuit is operatively coupled to the detector circuit for developing a correction signal responsive to said detecting.
摘要:
A phase locked loop frequency synthesizer comprises a voltage controlled oscillator; a loop filter for supplying a control voltage to the oscillator; a phase frequency detector arranged to detect a phase difference between a reference signal and a feedback signal generated from the oscillator signal and generate pulses on detector signals (UP/DN) dependent on the sign of the phase difference; and a charge pump (61) comprising current generating means and controlled switches (64, 65) arranged to convert pulses on the detector signals to current pulses from a reference voltage (Vdd′) to a common terminal (Vloop) connected to the loop filter or to current pulses from the common terminal to ground. The current generating means comprises at least one resistor (62, 63) connected between the common terminal and the switches, and the charge pump comprises an operational amplifier (66) coupled to keep the reference voltage at twice the voltage at the common terminal.
摘要:
A phase locked loop frequency synthesizer comprises a voltage controlled oscillator; a loop filter for supplying a control voltage to the oscillator; a phase frequency detector arranged to detect a phase difference between a reference signal and a feedback signal generated from the oscillator signal and generate pulses on detector UP signals (UP/DN) dependent on the sign of the phase difference; and a charge pump (61) comprising current generating means and controlled switches (64, 65) arranged to convert pulses on the detector signals to current pulses from a reference voltage (Vdd′) to a common terminal (Vloop) connected to the loop filter or to current pulses from the common terminal to ground. The current generating means comprises at least one resistor (62, 63) connected between the common terminal and the switches, and the charge pump comprises an operational amplifier (66) coupled to keep the reference voltage at twice the voltage at the common terminal.
摘要:
A wireless communication device includes at least two antennas with at least two corresponding receive chains. Selectively activating and deactivating the receivers as needed for a desired quality of reception controls the performance and power consumption of the wireless communication device. The wireless communication device may operate in a single receiver mode or a dual receiver diversity mode. In the dual receiver diversity mode, the wireless communication device may selectively control the gain of one or more antennas and/or reconfigure one or more receive chains to minimize power consumption while maintaining a desired performance.
摘要:
A method and apparatus for dynamically compensating for delay mismatch between a supply signal and an input signal of a power amplifier in polar modulation transmitters. One exemplary polar modulation transmitter according to the present invention comprises a power amplifier, a phase modulator, a regulator, a delay tracking circuit, and a delay circuit. The phase modulator derives the amplifier input signal responsive to one or more phase signals, while the regulator derives the amplifier supply signal responsive to an amplitude signal. Based on the amplitude signal and the amplifier supply signal, the delay tracking circuit tracks an observed amplitude path delay. The delay circuit adjusts a path delay associated with the phase signal, responsive to the observed amplitude path delay, to compensate for the delay mismatch.
摘要:
A frequency synthesizer circuit generates an output clock signal having a desired frequency relationship with an input reference signal, and offers essentially arbitrary relational values and adjustment resolution within any applicable circuit limits. The frequency synthesizer includes a ring oscillator circuit that provides multiple phases of its output clock signal, a phase selection circuit to select a phase of the output clock signal for feedback to an oscillator control circuit at each cycle of the reference signal according to a phase selection sequence. The oscillator control circuit generates a control signal responsive to comparing the selected phases of the output clock signal with the reference signal, and the phase selection circuit may include a modulator to generate phase selection sequences having desired time-average values that enable arbitrary frequency adjustability.
摘要:
A transimpedance stage amplifier converts a current input signal at an input node to a low impedance output voltage at an output node. The amplifier includes a resistor connected between the input node and the output node. A feedback loop is connected across the resistor, the feedback loop comprising a transistor, the transistor using the current input signal as a biasing current.
摘要:
In a communication transceiver receiving a signal from a signal source defined by a source impedance between first and second nodes, an amplifier is provided having an input impedance matched to the source impedance. The amplifier includes a first transconductance cell having a first transconductance related to the input impedance and including first and second transistors each having control, supply and output elements. The first transconductance cell receives the signal from the signal source at the first and second control elements and develops a modified version of the signal as an output current signal at the first and second output elements, respectively. The first and second transistors are interconnected such that the control element of the first transistor is connected to the output element of the second transistor, and the control element of the second transistor is connected to the output element of the first transistor. The amplifier further includes a second transconductance cell having a second transconductance related to the input impedance and including third and fourth transistors connected to the first and second output elements. The second transconductance cell combines currents appearing at the first and second output elements and develops a combined output current signal at respective output terminals thereof.