摘要:
This invention is an improved method for scanning for flaws on a surface utilizing dynamic correction. Each individual scan signal is divided into a large number of increments, each increment representing a predetermined position in the scan. A dynamic average is computed for each of the scan positions and flaws are detected by comparing the increment signals to the dynamic average signal for the same position. This technique is especially useful to detect flaws on high quality tubing, such as used for nuclear reactor fuel rods or for nuclear reactor steam generator tubing.
摘要:
A fiber optic repeater comprising a substrate of electro-optically sensitive material and an optical waveguide formed in the surface of the substrate and extending between longitudinally opposite edge portions of the substrate. The waveguide includes longitudinally opposite end portions each having a terminal face exposed at one of the edge portions of the substrate and a pair of laterally spaced-apart central portions joined to each of the end portions. The waveguide propagates the optical signals between the exposed terminal faces. First and second data branches are formed in the surface of the substrate to divert a portion of the optical signal being propagated by the waveguide before the signal enters the central portions of the waveguide. Each data branch has a connecting portion extending from an end portion of the waveguide and an output end opposite the connecting portion. A photodetector is coupled to the output end of each data branch to detect the portion of the optical signals diverted by the respective data branch. A system including a plurality of optical repeaters each having the capability to receive data from and transmit data to an optical fiber data bus also is disclosed.
摘要:
The invention comprises an optical interferometer system utilizing optical fibers. Titanium is diffused into the surface of lithium niobate substrate to form an optical waveguide utilized by the interferometer. The central portion of the optical waveguide is divided into two substantially parallel sections. Grooves between and alongside the optical waveguide are etched into the surface of the lithium niobate to optically decouple the waveguide sections from each other and from the substrate. A first electrode is positioned between the parallel sections of the optical waveguide with second and third electrodes positioned alongside these sections. These electrodes are utilized to subject the optical waveguides to an electrical field to differentially modulate the velocity of optical energy in the parallel sections or waveguide in response to an electrical signal. This differential modulation of the velocity of optical energy permits enhancement of attenuation of the propagating light to develop in the waveguide. Along two edges of the optical interferometer, small shelves are formed in the ends of the substrate to expose the ends of optical waveguide. Optical fibers are tapered by selectively etching the cladding and the core. A metal layer is formed on the tapered portion of the cladding to prevent light from escaping from the optical fiber. Micro-positioners are utilized to position the exposed ends of the core adjacent the exposed ends of the waveguides and the optical fiber is affixed in this position with a material which adheres to both the optical fiber and the lithium niobate substrate.
摘要:
A Faraday rotator optical sensor in combination with optical fiber transmission means is employed to monitor overload current conditions in a high voltage electrical load and transmit this information to a low voltage signal processing circuit while providing desired isolation between the high voltage load and the low voltage signal processing circuit.
摘要:
A Faraday rotator optical sensor in combination with optical fiber transmission means is employed to monitor overload current conditions in a high voltage electrical load and transmit this information to a low voltage signal processing circuit while providing desired isolation between the high voltage load and the low voltage signal processing circuit.
摘要:
A magneto-optical current sensor for measuring current flowing through a conductor, characterized by at least two components. One component is parallel to the direction of current flow and is proximate to a source of magnetic field. The other component is perpendicular to that direction and includes a surface in contact with said one component. One of the components having a reflective surface for reflecting a polarized light beam between components whereby a light signal is produced that is compensated for temperature, loop degradation, and linearity.
摘要:
Apparatus for measuring current in a conductor characterized by a magneto-optical current sensor employing the Faraday effect to measure current in a high voltage transmission line. Polarized light having a predetermined plane of polarization is directed into the sensor which plane of polarization is rotated by magnetic field lines generated by the current in the conductor. A bimetal coil rotates the sensor to achieve temperature stability of the current signal in the temperature range of -40.degree. C. to 140.degree. C.
摘要:
The invention comprises a method for coupling an optical fiber to an optical device. Ends of optical fibers are ion polished. Micro-manipulators are used to position the polished end in abutting relationship with the optical device. A liquid which contains glass constituents is used to coat the junction of the optical fiber and the optical device. The liquid is subjected to a temperature cycle which fuses the glass constituents to the optical fiber and to the optical device.
摘要:
Apparatus for positioning a mirror to reflect solar radiation from the sun onto a remote receiver. Two wide angle, preferably cylindrical lenses are positioned through the mirror, parallel to the reflective face of the mirror, with their optical axes at ninety degrees respectively corresponding to elevation and azimuth. Multi-element photosensors are rigidly affixed behind the mirror so that images of the sun and the receiver can be focused on the sensors. The sensors extend a length equivalent to the field of view through the respective lens encompassing the sun and receiver during the daily and seasonal apparent path of the sun. A selected element of each photosensor is positioned along a line representing the normal to the mirror surface through its corresponding lens. Electrical circuitry and drive apparatus utilize the signals from the photosensors representative of the images of the sun and receiver, and the distance of each image from the selected element, to position the mirror to reflect solar radiation onto the receiver. The mirror is properly oriented where the images are equidistant from the selected element representing the normal. The image of the receiver can be formed by radiation reflected from the receiver back toward the mirror or by additional apparatus such as a steady or pulsed light source.