Abstract:
A two-stage digital-to-analog converter for outputting an analog voltage in response to a M-bit digital input code includes a two-bit serial charge redistribution digital-to-analog converter having a high reference voltage input node for receiving a high reference voltage and a low reference voltage input node for receiving a low reference voltage, and a voltage selector. The voltage selector sets the high reference voltage and low reference voltage to selected levels depending on at least a portion of the M-bit digital input code.
Abstract:
An integrated circuit includes a digital-to-analog converter (DAC) circuit including at least one first channel type DAC and at least one second channel type DAC. The integrated circuit includes a plurality of sample and hold (S/H) circuits. Each of the S/H circuits is coupled with the DAC circuit. The S/H circuits are capable of receiving signals from the DAC circuit and outputting the signals in parallel.
Abstract:
A circuit includes a capacitive-load voltage controlled oscillator having an input configured to receive a first input signal and an output configured to output an oscillating output signal. A calibration circuit is coupled to the voltage controlled oscillator and is configured to output one or more control signals to the capacitive-load voltage controlled oscillator for adjusting a frequency of the oscillating output signal. The calibration circuit is configured to output the one or more control signals in response to a comparison of an input voltage to at least one reference voltage.
Abstract:
A clock and data recovery (CDR) circuit includes an inductor-capacitor voltage controlled oscillator (LCVCO) configured to generate a clock signal with a clock frequency. A delay locked loop (DLL) is configured to receive the clock signal from the LCVCO and generate multiple clock phases. A charge pump is configured to control the LCVCO. A phase detector is configured to receive a data input and the multiple clock phases from the DLL, and to control the first charge pump in order to align a data edge of the data input and the multiple clock phases.
Abstract:
A millimeter-wave wideband frequency doubler stage for use in a distributed frequency doubler includes: a differential input pair of transistors, each transistor having respective gate, drain and source terminals, wherein the source terminals are coupled together to a first power supply node and the drain terminals are coupled together at a first node to a second power supply node; first and second pairs of bandpass gate lines coupled to the gate terminals of the transistors; and a pair of bandpass drain lines coupled to the drain terminals of the transistors.
Abstract:
A level shifter includes an input node, an output node, a pull-up transistor, a pull-down transistor, and at least one diode-connected device coupled between the pull-up transistor and the pull-down transistor. The level shifter is arranged to be coupled to a high power supply voltage, to receive an input signal having a first voltage level at the input node, and to supply an output signal having a second voltage level at the output node. The high power supply voltage is higher than the first voltage level. The at least one diode-connected device allows the output signal to be pulled up to about a first diode voltage drop below the high power supply voltage and/or to be pulled down to about a second diode voltage drop above ground. The first diode voltage drop and the second diode voltage drop are from the at least one diode-connected device.
Abstract:
A MOS device includes an active area having first and second contacts. First and second gates are disposed between the first and second contacts. The first gate is disposed adjacent to the first contact and has a third contact. The second gate is disposed adjacent to the second contact and has a fourth contact coupled to the third contact. A transistor defined by the active area and the first gate has a first threshold voltage, and a transistor defined by the active area and the second gate has a second threshold voltage.
Abstract:
A circuit design system includes a schematic design tool configured to generate schematic information and pre-coloring information for a circuit. The circuit design system also includes a netlist file configured to store the schematic information and the pre-coloring information on a non-transitory computer readable medium and an extraction tool configured to extract the pre-coloring information from the netlist file. A layout design tool, included in the circuit design system, is configured to design at least one mask based on the schematic information and the pre-coloring information. The circuit design system further includes a layout versus schematic comparison tool configured to compare the at least one mask to the schematic information and the pre-coloring information.
Abstract:
A method of designing an integrated circuit includes providing a cell library including a first and second cell structures. The cell structures each include a dummy gate electrode disposed on a boundary. An edge gate electrode is disposed adjacent to the dummy gate electrode. An oxide definition (OD) region has an edge disposed between the edge gate electrode and the dummy gate electrode. The method includes determining if the cell structures are to be abutted with each other. If so, the method includes abutting the cell structures. If not so, the method includes increasing areas of portions of the OD regions between the edge gate electrodes and the dummy gate electrodes.
Abstract:
A level shifter includes one PMOS and two NMOS transistors. A source of the first NMOS transistor is coupled to a low power supply voltage. An input signal is coupled to a gate of the first NMOS transistor and a source of the second NMOS transistor. The input signal has a voltage level up to a first power supply voltage. A source of the PMOS transistor is coupled to a second power supply voltage, higher than the first power supply voltage. An output signal is coupled between the PMOS and the first NMOS transistors. The first NMOS transistor is arranged to pull down the output signal when the input signal is a logical 1, and the second NMOS transistor is arranged to enable the PMOS transistor to pull up the output signal to a logical 1 at the second power supply voltage when the input signal is a logical 0.