Abstract:
A boost converter comprises a comparator circuit including: a first input port configured to receive an off-time sawtooth voltage a second input port configured to receive an on-time sawtooth voltage, the comparator circuit comparing the off-time sawtooth voltage and on-time sawtooth voltage to generate trigger signal including a differential ripple voltage that is output by an output port to a power stage circuit. The boost converter further comprises a reference voltage source that provides a reference voltage to the first input port and a feedback circuit that provides the on-time sawtooth voltage to the second port, wherein the differential ripple voltage emulates an inductor current or voltage of an output capacitor of the power stage circuit.
Abstract:
Embodiments are provided that include a light emitting diode (LED) controller connectable to a matrix of LEDs. A start code is received via at least one input pin, and a selected curve profile is retrieved from a programmable local memory in response to receipt of the start code, wherein the programmable local memory stores a set of curve profiles, each of which is associated with a different start code. A set of coefficients of a polynomial calculator are initialized to a set of values defined in the selected curve profile, wherein the set of values represent a light output curve. A sequence of light intensity values are calculated according to the polynomial calculator, and at least one pulse width modulation (PWM) signal is generated based on the sequence of light intensity values, wherein the at least one PWM signal controls light output of at least one LED.
Abstract:
A control circuit provides a signal to a control terminal of the transistor to control the conductivity of the transistor. The control circuit includes a voltage-to-current converter that provides an indication of the control terminal-to-current terminal voltage of a transistor. The control circuit includes control circuitry that uses the indication from the voltage-to-current converter in controlling the current applied to the control terminal.
Abstract:
An LED controller includes: a light intensity calculator to calculate light intensity values that correspond to points on a desired light output curve; and processing logic configured to: initialize a scaling parameter of the light intensity calculator with a present scaling value that indicates a first number of steps, dynamically receive a subsequent scaling value that indicates a second number of steps at a change time after the light intensity calculator has begun calculation of the light intensity values according to the present scaling value, and change the scaling parameter of the light intensity calculator to the subsequent scaling value before the light intensity calculator has completed calculation of the light intensity values, wherein a difference between a next light intensity value calculated immediately after the change time and a previous light intensity value calculated immediately before the change time is within a flicker threshold.
Abstract:
A switch mode power converter configured for operation with a plurality of outputs is disclosed. The switch mode power converter includes an inductive element and a resistance in series with the inductive element. The resistance is series with the inductive element is used for determining a current through the inductive element. The resistance is a resistance between the main terminals of a switch in an on-state. The switch have two main terminals and a control terminal and being arranged for directing current through the inductive element to a one of the plurality of outputs.
Abstract:
An apparatus is described, comprising: a first power converter with real or artificial hysteresis; a second power converter with real or artificial hysteresis; and a control circuit configured to output a control signal dependent on a phase difference or frequency difference between the first and second power converters; wherein the apparatus is configured such that a magnitude of hysteresis of at least one of said first and second power converters is controlled by said control signal.
Abstract:
A wireless electrical power receiver for inductively generating alternating current power in a wireless electrical power transfer system having a transmission resonant frequency, the receiver comprising a receiver resonator having a receiver resonant frequency, the receiver resonator constructed and arranged such that the receiver resonant frequency is detuned from the transmission resonant frequency.
Abstract:
The invention provides a cascode transistor circuit with a depletion mode transistor and a switching device. A gate bias circuit is connected between the gate of the depletion mode transistor and the low power line. The gate bias circuit is adapted to compensate the forward voltage of a diode function of the switching device. The depletion mode transistor and the gate bias circuit are formed as part of an integrated circuit.
Abstract:
Embodiments relate to a diode circuit which uses a Schottky diode. A parallel bypass branch has a switch and bypass diode in series. The operation of the switch is dependent on the voltage across the Schottky diode so that the bypass function is only effective when a desired voltage is reached. The diode circuit can be used as a replacement for a single diode, and provides bypass current protection preferably without requiring any external control input.
Abstract:
A controller for a DC-DC converter that includes an inductor. The DC-DC converter has three phases of operation: a first phase, in which an input voltage charges the inductor; a second phase, in which the inductor discharges to a load; and a third phase, in which the inductor is disconnected from the load and in which the input voltage does not charge the inductor. The controller is configured to set a control-factor based on the input voltage of the DC-DC converter, and set the duration of the third phase based on the control-factor and the sum of the duration of the first phase and the second phase.