Abstract:
An apparatus comprising means for: receiving a first message, the first message comprising reference signal resource information for measuring channel state information; causing the apparatus, when operating the apparatus in a first radio resource control mode, to measure channel state information based on a reference signal of the channel state information.
Abstract:
Methods and apparatus, including computer program products, are provided for conditional handovers. In some example embodiments, there may be provided a method including sending, by a first node serving a user equipment, a message to a second node, the message including an indication of whether a conditional cell change is prohibited at the second node; and receiving, by the first node, an acknowledgment in response to the message.
Abstract:
Methods and apparatus, including computer program products, are provided for dual connectivity. In one aspect there is provided a method. The method may include applying, at a user equipment having dual connectivity to a first wireless access point and a second wireless access point, a first discontinuous receive cycle pattern in a second cell served by the second wireless access point, when the user equipment is active in a first cell served by the first wireless access point; and applying, at the user equipment having dual connectivity to the first wireless access point and the second wireless access point, a second discontinuous receive cycle pattern in the second cell, when the user equipment is not active in the first cell. Related apparatus, systems, methods, and articles are also described.
Abstract:
Handover failure modes are identified by logging information associated with at least one of a handover failure or a radio link failure. The information identifies whether or not a user equipment was engaged in an exchange of at least one of data traffic or control traffic with a network at the time that the handover failure or radio link failure occurred. The information is stored in a non-transitory computer-readable medium, and the information is reported to the network. The information is reported using a radio link failure or connection failure information signaling message. The severity of the handover failure or radio link failure is evaluated based upon the information.
Abstract:
Systems, methods, apparatuses, and computer program products for enhancing the setup of carrier aggregation (or dual connectivity or multi connectivity or stand-alone LTE/LTE-like on unlicensed band or LAA or LTE-WLAN aggregation) from IDLE mode (or semi-idle or semi-connected or suspended state) are provided. One method includes providing an indication, to at least one UE, of (or configuring the UE with) potential inter-frequency carriers that the UE should measure during IDLE mode (or during semi-idle or semi-connected or suspended state) for potential SCells. The method may further include during or after RRC connection establishment, receiving an indication from the at least one UE that it has inter-frequency carrier(s) and/or SCell measurement results available, and based on the received measurement results, configuring carrier aggregation (or dual connectivity or multi connectivity or LAA or LTE-WLAN aggregation) without further measurements and activating the SCell.
Abstract:
In response to a request from a source cell, a target cell allocates resources for a user equipment (UE) to establish a connection with that target cell. The target cell sends to the source cell a) a set of RRC parameters that identify the allocated resources and b) an indication of a validity time the set of RRC parameters are valid for establishing the connection. The source cell sends the UE an autonomous user equipment mobility (AUM) configuration (including the set of RRC parameters) and an indication of a validity time during which the AUM configuration remains valid for establishing the connection with the target cell associated with that AUM configuration. The UE stores the AUM configuration and the validity time in its local memory, and utilizes the AUM configuration to establish a connection with the target cell only if the validity time is not expired.
Abstract:
Communication systems may benefit from appropriate measurements of transmitters. For example, certain communication systems using dual connectivity may benefit from network controlled and deployment based increased primary cell measurements. A method can include configuring, by a network element, a user equipment to perform measurements on both a master cell group and a secondary cell group, according to activity in the secondary cell group.
Abstract:
Various methods are provided for triggering a power headroom report. One example method may include storing a first pathloss value and a second pathloss value for a first entity and a first pathloss value and a second pathloss value for a second entity, for each of the first entity and second entity, determining whether first pathloss value or second pathloss value has changed more than a corresponding threshold value, determining whether the UE has UL resources for a new transmission, and in an instance where, for at least one of the first entity or second entity, the first pathloss value or second pathloss value has changed (e.g., increased or decreased) more than the corresponding threshold value, triggering a PHR. A corresponding apparatus and computer program product are also provided.
Abstract:
Handover failure modes are identified by logging information associated with at least one of a handover failure or a radio link failure. The information identifies whether or not a user equipment was engaged in an exchange of at least one of data traffic or control traffic with a network at the time that the handover failure or radio link failure occurred. The information is stored in a non-transitory computer-readable medium, and the information is reported to the network. The information is reported using a radio link failure or connection failure information signaling message. The severity of the handover failure or radio link failure is evaluated based upon the information.
Abstract:
Methods, apparatuses, and computer program products for discontinuous reception (DRX) are provided. One method may include configuring a user equipment with a first inactivity timer and a second inactivity timer. The user equipment may be further configured, after decoding a physical downlink control channel (PDCCH) indicating a new data transmission, to start the first inactivity timer for a first N times of active time, and to start the second inactivity timer for times subsequent to the first N times. If a short DRX cycle is configured, expiry of the first inactivity timer does not start a short discontinuous reception (DRX) cycle, while expiry of the second inactivity timer starts the short discontinuous reception (DRX) cycle.