Abstract:
An error correction device according to this invention includes a first correction unit configured to perform error correction decoding of data by a repetitive operation, and having a full operation state in which the repetitive operation of the error correction decoding is repeated until convergence is obtained and a save operation state in which the number of times of the repetitive operation of the error correction decoding is restricted to a predetermined number of times, an error information estimation unit configured to estimate an input error rate or an output error rate of the first correction unit using a decoding result of the first correction unit, and a control unit configured to control transition between the full operation state and the save operation state of the first correction unit based on at least one piece of information of the input error rate, the output error rate, and an operation time of the first correction unit. According to this invention, it is possible to provide an error correction device that can improve a transmission characteristic while suppressing power consumption.
Abstract:
A symbol phase difference compensating portion (6) calculates a first phase difference which is a phase difference between a known pattern extracted from a received signal and a true value of the known pattern and performs phase compensation for the received signal based on the first phase difference. A tentative determination portion (12) tentatively determines an output signal of the symbol phase difference compensating portion (6) to acquire an estimated value of a phase. A first phase difference acquiring portion (13) acquires a second phase difference which is a phase difference between a phase of the output signal and the estimated value of the phase acquired by the tentative determination portion (12). A first phase difference compensating portion (14) performs phase compensation for the output signal based on the second phase difference.
Abstract:
The estimation of an amount of chromatic dispersion using a training signal sequence is possible. A transmission method includes: a training signal sequence generation step of generating, as training signal sequences, a plurality of signal sequences having power concentrated in a plurality of frequency bands, the power concentrated at different frequency bands; a training signal sequence selection step of selecting at least one training signal sequence from among the plurality of training signal sequences generated in the training signal sequence generation step, a signal multiplexing step of generating a signal sequence obtained by time-division multiplexing the training signal sequence selected in the training signal sequence selection step with a transmission data sequence, and an electrical-to-optical conversion step of transmitting the signal sequence generated in the signal multiplexing step as an optical signal.
Abstract:
An optical receiving device receives an optical signal that has been modulated by means of phase modulation or quadrature amplitude modulation, converts the received optical signal into an electrical signal using coherent detection, and performs phase compensation on the converted received signal, and includes: a carrier phase estimation unit that estimates carrier phase errors in a received symbol string obtained from the received signal; a gain adjustment unit that performs gain adjustment on symbols input into the carrier phase adjustment unit; a phase cycle slip reduction unit that, by performing statistical processing on an output from the carrier phase estimation unit, detects general noise that causes a phase cycle slip, and reduces the phase cycle slip; and a phase compensation circuit that compensates carrier phase errors contained in the received signal using an output from the carrier phase estimation unit.
Abstract:
A first reception processing unit performs a process of receiving a first signal transmitted on a first transmission line, a second reception processing unit performs a process of receiving a second signal transmitted on a second transmission line, and an output speed control unit controls output speeds of the first signal and the second signal subjected to the reception process. A system switching unit selects and outputs the first signal or the second signal subjected to a reception process, and an output processing unit performs a process for output to another apparatus on the output from the system switching unit. A reception side clock output unit outputs a clock signal giving a processing timing of each process, and a clock frequency control unit adjusts a frequency of the clock signal giving the processing timing to the output processing unit. A frequency adjustment range calculation unit calculates an adjustment range of the frequency based on frequency deviation accuracy of the reception side clock output unit, frequency deviation accuracy of a transmission side clock output unit that outputs a clock signal giving a processing timing to a transmission process at a transmission apparatus on the transmission side, and a prescribed value of a frequency deviation.
Abstract:
A frame synchronization apparatus (10) according to this invention includes a multiplication unit (11) configured to multiply a received signal by an inverse complex number of a predetermined synchronization pattern with respect to a predetermined signal point on a complex space diagram for each of a plurality of symbols of the received signal, an addition average unit (12) configured to perform addition averaging of outputs from the multiplication unit for the plurality of symbols of the received signal, and a synchronization determination unit (13) configured to perform coincidence determination of whether an output from the addition average unit (12) falls within a predetermined coincidence determination range of the predetermined signal point, and determine a synchronization state of the frame synchronization based on a result of the coincidence determination. According to this invention, it is possible to provide a frame synchronization apparatus that correctly determines a synchronization state even if an error rate of received symbols is high.
Abstract:
A frame synchronization apparatus (10) according to this invention includes a multiplication unit (11) configured to multiply a received signal by an inverse complex number of a predetermined synchronization pattern with respect to a predetermined signal point on a complex space diagram for each of a plurality of symbols of the received signal, an addition average unit (12) configured to perform addition averaging of outputs from the multiplication unit for the plurality of symbols of the received signal, and a synchronization determination unit (13) configured to perform coincidence determination of whether an output from the addition average unit (12) falls within a predetermined coincidence determination range of the predetermined signal point, and determine a synchronization state of the frame synchronization based on a result of the coincidence determination. According to this invention, it is possible to provide a frame synchronization apparatus that correctly determines a synchronization state even if an error rate of received symbols is high.
Abstract:
A reception circuit includes a first adaptive compensator compensating distortion of a received signal. An adaptive compensation coefficient calculator includes a known-signal detector detecting first and second known-signals from the received signal, a second adaptive compensator compensating distortion of the received signal, a tap coefficient initial value calculator calculating an initial value of a tap coefficient of the second adaptive compensator by comparing the first known-signal with its true value, a first phase shift compensator compensating phase shift of an output of the second adaptive compensator using the second known-signal, and a tap coefficient calculator calculating tap coefficients of the first and second adaptive compensators by comparing at least one of the first and second known-signals compensated by the second adaptive compensator and the first phase shift compensator with its true value.
Abstract:
A signal processing device includes a distributing unit and a plurality of correcting units with different processing performance, the distributing unit distributes a bit sequence having a first number of bits to the first correcting unit, and a bit sequence having a second number of bits less than the first number of bits to the second correcting unit having lower processing performance than the first correcting unit, the first correcting unit applies error correction processing to the bit sequence having the first number of bits distributed to the first correcting unit, and the second correcting unit applies error correction processing to the bit sequence having the second number of bits distributed to the second correcting unit.
Abstract:
Fourier transform is performed on a reception signal to obtain a first calculation value. Fourier transform is performed on a known signal to obtain a second calculation value. The first calculation value is divided by the second calculation value to obtain a third calculation value. Inverse Fourier transform is performed on the third calculation value to obtain a fourth calculation value. A maximum value of an amplitude of the fourth calculation value and a sample point at which the maximum value is obtained are detected. The position of the known signal in the reception signal is detected from the sample point at which the maximum value is obtained.