-
公开(公告)号:US11710153B2
公开(公告)日:2023-07-25
申请号:US17202823
申请日:2021-03-16
发明人: Abhishek Singhal , Gautam Muralidhar , Christopher F. Pouliot , Edward H. Baik , Jonathan A. Cox
IPC分类号: G06Q30/02 , G06Q30/0251 , G06F16/29 , G01S13/86 , G01S15/02 , G08G1/16 , G06F16/95 , B62D15/02 , G01C21/34 , G01S13/87 , B60S1/56 , G01C21/36 , B60R11/04 , B60S1/62 , G01S7/40 , G01S7/497 , G01S17/89 , G02B27/00 , B60W30/09 , B60W50/00 , G05D1/00 , G05D1/02 , A61B5/01 , A61B5/024 , A61B5/08 , A61B5/16 , A61B5/18 , B60W40/09 , B60W50/08 , B60W10/18 , B60W10/20 , B60W10/04 , B60W40/04 , B60W40/08 , B60W40/105 , B62D15/00 , G01S13/931
CPC分类号: G06Q30/0266 , A61B5/01 , A61B5/024 , A61B5/08 , A61B5/165 , A61B5/18 , B60R11/04 , B60S1/56 , B60S1/62 , B60W10/04 , B60W10/18 , B60W10/20 , B60W30/09 , B60W40/04 , B60W40/08 , B60W40/09 , B60W40/105 , B60W50/0097 , B60W50/0098 , B60W50/08 , B60W50/082 , B62D15/00 , B62D15/0265 , G01C21/3407 , G01C21/3461 , G01C21/3469 , G01C21/3484 , G01C21/3492 , G01C21/3682 , G01C21/3691 , G01C21/3697 , G01S7/4021 , G01S7/497 , G01S13/862 , G01S13/865 , G01S13/867 , G01S13/87 , G01S15/02 , G01S17/89 , G02B27/0006 , G05D1/0061 , G05D1/0088 , G05D1/0212 , G05D1/0214 , G05D1/0221 , G05D1/0276 , G06F16/29 , G06F16/95 , G06Q30/0269 , G08G1/161 , G08G1/163 , G08G1/164 , G08G1/165 , G08G1/166 , B60W2040/0809 , B60W2050/0004 , B60W2050/0014 , B60W2300/34 , B60W2510/08 , B60W2510/18 , B60W2520/04 , B60W2520/105 , B60W2540/043 , B60W2540/18 , B60W2540/22 , B60W2540/30 , B60W2554/00 , B60W2554/80 , B60W2710/18 , B60W2710/20 , B60W2756/10 , B60W2900/00 , G01S7/4043 , G01S2007/4977 , G01S2013/932 , G01S2013/9316 , G01S2013/9318 , G01S2013/9319 , G01S2013/9322 , G01S2013/9325 , G01S2013/93185 , G01S2013/93271 , G01S2013/93272 , G01S2013/93273 , G01S2013/93274 , G01S2013/93275 , G05D2201/0212 , G07C5/0808 , G01S19/13
摘要: Embodiments herein can determine an optimal route for an autonomous electric vehicle. The system may score viable routes between the start and end locations of a trip using a numeric or other scale that denotes how viable the route is for autonomy. The score is adjusted using a variety of factors where a learning process leverages both offline and online data. The scored routes are not based simply on the shortest distance between the start and end points but determine the best route based on the driving context for the vehicle and the user.