Abstract:
A semiconductor device can be manufactured with a high non-defect ratio, making it possible to easily guarantee the KGD (Known-Good-Die) of semiconductor chips, when configuring one packaged semiconductor device on which a plurality of semiconductor chips is mounted. Utilizing each semiconductor chip is made possible without limits on terminal position, pitch, signal arrangement, and so on.Protrusions provided to a semiconductor chip mounted sealing sub-board are attached to a package substrate. A plurality of semiconductor bare chips is disposed in a space formed between the semiconductor chip mounted sealing sub-board and the package substrate, making wiring possible.
Abstract:
A semiconductor chip mounted interposer (60) is configured by executing wire bonding between a semiconductor chip (50) and an interposer (20), in which terminals (21) that connect to terminals (51) of the chip (50) and separate terminals (22) are formed, on the upper face of the interposer (20). A semiconductor chip (30) is mounted to the top face of a package substrate (10), the interposer (60) is adhered to the upper portion of the chip (30), and wire bonding is executed between the terminals (22) and terminals (11′). When configuring a semiconductor device with a plurality of semiconductor chips combined into one package in this manner, KGD (Known-Good-Die) can easily be guaranteed for each semiconductor chip, and semiconductor devices can be fabricated with a high yield of good units. Also, the semiconductor chips can be used as-is, without restricting the position, pitch, signal arrangement, or the like, of their terminals.
Abstract:
A semiconductor device can be manufactured with a high non-defect ratio, making it possible to easily guarantee the KGD (Known-Good-Die) of semiconductor chips, when configuring one packaged semiconductor device on which a plurality of semiconductor chips is mounted. Utilizing each semiconductor chip is made possible without limits on terminal position, pitch, signal arrangement, and so on.Protrusions provided to a semiconductor chip mounted sealing sub-board are attached to a package substrate. A plurality of semiconductor bare chips is disposed in a space formed between the semiconductor chip mounted sealing sub-board and the package substrate, making wiring possible.
Abstract:
A semiconductor device can be manufactured with a high non-defect ratio, making it possible to easily guarantee the KGD (Known-Good-Die) of semiconductor chips, when configuring one packaged semiconductor device on which a plurality of semiconductor chips is mounted. Utilizing each semiconductor chip is made possible without limits on terminal position, pitch, signal arrangement, and so on. Protrusions provided to a semiconductor chip mounted sealing sub-board are attached to a package substrate. A plurality of semiconductor bare chips is disposed in a space formed between the semiconductor chip mounted sealing sub-board and the package substrate, making wiring possible.
Abstract:
A semiconductor device can be manufactured with a high non-defect ratio, making it possible to easily guarantee the KGD (Known-Good-Die) of semiconductor chips, when configuring one packaged semiconductor device on which a plurality of semiconductor chips is mounted. Utilizing each semiconductor chip is made possible without limits on terminal position, pitch, signal arrangement, and so on.Protrusions provided to a semiconductor chip mounted sealing sub-board are attached to a package substrate. A plurality of semiconductor bare chips is disposed in a space formed between the semiconductor chip mounted sealing sub-board and the package substrate, making wiring possible.
Abstract:
A semiconductor device can be manufactured with a high non-defect ratio, making it possible to easily guarantee the KGD (Known-Good-Die) of semiconductor chips, when configuring one packaged semiconductor device on which a plurality of semiconductor chips is mounted. Utilizing each semiconductor chip is made possible without limits on terminal position, pitch, signal arrangement, and so on. Protrusions provided to a semiconductor chip mounted sealing sub-board are attached to a package substrate. A plurality of semiconductor bare chips is disposed in a space formed between the semiconductor chip mounted sealing sub-board and the package substrate, making wiring possible.
Abstract:
A semiconductor chip mounted interposer (60) is configured by executing wire bonding between a semiconductor chip (50) and an interposer (20), in which terminals (21) that connect to terminals (51) of the chip (50) and separate terminals (22) are formed, on the upper face of the interposer (20). A semiconductor chip (30) is mounted to the top face of a package substrate (10), the interposer (60) is adhered to the upper portion of the chip (30), and wire bonding is executed between the terminals (22) and terminals (11′). When configuring a semiconductor device with a plurality of semiconductor chips combined into one package in this manner, KGD (Known-Good-Die) can easily be guaranteed for each semiconductor chip, and semiconductor devices can be fabricated with a high yield of good units. Also, the semiconductor chips can be used as-is, without restricting the position, pitch, signal arrangement, or the like, of their terminals.
Abstract:
A semiconductor chip mounted interposer (60) is configured by executing wire bonding between a semiconductor chip (50) and an interposer (20), in which terminals (21) that connect to terminals (51) of the chip (50) and separate terminals (22) are formed, on the upper face of the interposer (20). A semiconductor chip (30) is mounted to the top face of a package substrate (10), the interposer (60) is adhered to the upper portion of the chip (30), and wire bonding is executed between the terminals (22) and terminals (11′). When configuring a semiconductor device with a plurality of semiconductor chips combined into one package in this manner, KGD (Known-Good-Die) can easily be guaranteed for each semiconductor chip, and semiconductor devices can be fabricated with a high yield of good units. Also, the semiconductor chips can be used as-is, without restricting the position, pitch, signal arrangement, or the like, of their terminals.
Abstract:
A method of manufacturing a semiconductor device according to the present invention includes the steps of: (a) introducing hydrogen and oxygen on a SiC substrate; and (b) subjecting the hydrogen and the oxygen to a combustion reaction on the SiC substrate to form a gate oxide film being a silicon oxide film on a surface of the SiC substrate by the combustion reaction.
Abstract:
There is provided a liquid discharging head discharging a liquid, including: a channel unit having a liquid channel including a pressure chamber which has an opening at one surface of the channel unit; a piezoelectric element formed of a piezoelectric material; an intermediate member preventing the liquid in the pressure chamber and the piezoelectric element from making contact with each other; a first adhesive layer composed of a first adhesive and adhering the channel unit and the intermediate member, the first adhesive being a thermo-setting adhesive starting to be cured at a first temperature; and a second adhesive layer composed of a second adhesive and adhering the intermediate member and the piezoelectric element, the second adhesive starting to be cured at a second temperature lower than the first temperature.