Abstract:
A deposit removal method for removing deposits deposited on the surface of a pattern formed on a substrate by etching, includes an oxygen plasma treatment process for exposing the substrate to oxygen plasma while heating the substrate and a cycle treatment process for, after the oxygen plasma treatment process, repeating multiple cycles of a first period and a second period. In the first period, the substrate is exposed to a mixture of hydrogen fluoride gas and alcohol gas inside a processing chamber and the partial pressure of the alcohol gas is set to the first partial pressure. In the second period, the partial pressure of the alcohol gas is set to the second partial pressure lower than the first partial pressure by exhausting the inside of the processing chamber.
Abstract:
A semiconductor device includes: a first layer; a second layer; a columnar structural unit; and a side portion. The second layer is provided on a major surface of the first layer. The columnar structural unit is conductive and aligned in the first layer and the second layer to pass through the major surface. The side portion is added to a side wall of the columnar structural unit on the second layer side of the major surface.
Abstract:
A semiconductor memory device comprises a plurality of transistors having a stacked-gate structure. Each transistor includes a semiconductor substrate, a gate insulator formed on the semiconductor substrate, a lower gate formed on the semiconductor substrate with the gate insulator interposed, an intergate insulator formed on the lower gate, and an upper gate formed and silicided on the lower gate with the intergate insulator interposed. A portion of the transistors has an aperture formed through the intergate insulator to connect the lower gate with the upper gate and further includes a block film composed of an insulator and formed smaller than the upper gate and larger than the aperture above the upper gate to cover the aperture.
Abstract:
A method of manufacturing a semiconductor device includes subjecting a semiconductor wafer, which includes a copper layer formed above a semiconductor substrate and covered with an insulating film, to a dry etching using a fluorocarbon gas to partially remove the insulating film, thereby at least partially exposing a surface of the copper layer. The copper layer, the surface of which is at least partially exposed is subjected to a nitrogen plasma treatment. The semiconductor wafer having the nitrogen plasma-treated copper layer is exposed to atmosphere, and then the semiconductor wafer is subjected to a surface treatment.
Abstract:
A deposit removal method for removing deposits deposited on the surface of a pattern formed on a substrate by etching, includes an oxygen plasma treatment process for exposing the substrate to oxygen plasma while heating the substrate and a cycle treatment process for, after the oxygen plasma treatment process, repeating multiple cycles of a first period and a second period. In the first period, the substrate is exposed to a mixture of hydrogen fluoride gas and alcohol gas inside a processing chamber and the partial pressure of the alcohol gas is set to the first partial pressure. In the second period, the partial pressure of the alcohol gas is set to the second partial pressure lower than the first partial pressure by exhausting the inside of the processing chamber.
Abstract:
A semiconductor memory device comprises a plurality of transistors having a stacked-gate structure. Each transistor includes a semiconductor substrate, a gate insulator formed on the semiconductor substrate, a lower gate formed on the semiconductor substrate with the gate insulator interposed, an intergate insulator formed on the lower gate, and an upper gate formed and silicided on the lower gate with the intergate insulator interposed. A portion of the transistors has an aperture formed through the intergate insulator to connect the lower gate with the upper gate and further includes a block film composed of an insulator and formed smaller than the upper gate and larger than the aperture above the upper gate to cover the aperture.
Abstract:
According to one embodiment, a semiconductor device manufacturing method comprises mounting a supporting substrate on a front surface side of a silicon substrate having an interconnection layer and function elements formed on a front surface side, polishing a back surface side of the silicon substrate, forming a mask having an opening and an opening for a dummy hole having a diameter smaller than that of the above opening on the back surface side of the silicon substrate, etching portions exposed to the openings of the mask from the back surface side of the silicon substrate to form a via hole that reaches a part of the interconnection layer and form a dummy hole to an intermediate portion of the silicon substrate, and forming an interconnection material in the via hole.
Abstract:
A semiconductor device manufacturing method includes: depositing a first insulating film and a second insulating film on a substrate sequentially and forming a pattern on the second insulating film; forming a silicon film on the pattern; forming a sidewall made of the silicon film by processing the silicon film until a part of the second insulating film is exposed by use of etch-back; removing the second insulating film; and performing dry etching by use of a fluorocarbon-based gas, to process the first insulating film by using the sidewall as a mask. The processing of the first insulating film includes applying on the substrate a self-bias voltage Vdc that satisfies a relational expression of Vdc
Abstract:
A method of manufacturing a semiconductor device includes subjecting a semiconductor wafer, which includes a copper layer formed above a semiconductor substrate and covered with an insulating film, to a dry etching using a fluorocarbon gas to partially remove the insulating film, thereby at least partially exposing a surface of the copper layer. The copper layer, the surface of which is at least partially exposed is subjected to a nitrogen plasma treatment. The semiconductor wafer having the nitrogen plasma-treated copper layer is exposed to atmosphere, and then the semiconductor wafer is subjected to a surface treatment.
Abstract:
Disclosed is a semiconductor device comprising a semiconductor substrate, a first metal wiring and a fuse, both being formed as the same level above the semiconductor substrate, a first insulating film formed on the first metal wiring and the fuse, the first insulating film having a first pad opening arriving at the first metal wiring, a second metal wiring formed at least within the first pad opening, the second metal wiring not extending above the fuse, a stopper film formed on the first insulating film and the second metal wiring, and a second insulating film formed above the stopper film. A second pad opening is formed to expose the second metal wiring by removing the second insulating film and the stopper film, a fuse opening is formed above at least the fuse by removing the second insulating film and the stopper film, and by removing the first insulating film incompletely.