摘要:
A preparation method of zinc manganese silicate is provided. The method includes the following steps: step 1, preparing silicon dioxide sol with distilled water, anhydrous ethanol and tetraethyl orthosilicate; step 2, preparing a mixture solution of a zinc salt and a manganese salt; step 3, adjusting the silicon dioxide sol to be neutral or acidic; step 4, adding the mixture solution of the zinc salt and the manganese salt into the silicon dioxide sol to form a gelatin; step 5, drying the gelatin, keeping the temperature, grinding, reducing with keeping the temperature in a reductive atmosphere to obtain zinc manganese silicate. The preparation method has simple technique and low equipment requirement. The particles of the zinc manganese silicate phosphor prepared by the method have a regular size, uniform shape and good luminescent performance.
摘要:
A method for producing core-shell magnetic alloy nanoparticle, comprising: step 1, dissolving nickel compound to produce solution; step 2, adding surfactant into the solution; step 3, dissolving the first reducing agent to produce the first reducing solution; step 4, adding the first reducing solution into the solution obtained from step 2, obtaining nickel nano-collosol by stirring and aging; step 5, adding metallic compound into the nickel nano-collosol; step 6, dissolving the second reducing agent to produce the second reducing solution; step 7, adding the second reducing solution into the mixed solution obtained from step 5; step 8, allow the product to stand, then discarding the supernatant, redispersing in water or absolute ethyl alcohol to obtain the core-shell magnetic alloy nanoparticle using nickel as the core.
摘要:
Double core-shell fluorescent materials and preparation methods thereof are provided. The double core-shell fluorescent materials include inner core, inner shell coating the inner core and outer shell coating the said inner shell. The inner core is metal particle and the chemical constitution of the inner shell is silicon dioxide. The outer shell is fluorescent powder represented by the following chemical formula: (R1-x, Eux)2O3, wherein R is Y, Gd or combination thereof, 0.02≦x≦0.1. The double core-shell fluorescent materials with uniform and stable luminous effect not only increase luminous intensity, but also decrease usage amount of fluorescent powder by using metal particle as inner core.
摘要:
A preparation method of zinc manganese silicate is provided. The method includes the following steps: step 1, preparing silicon dioxide sol with distilled water, anhydrous ethanol and tetraethyl orthosilicate; step 2, preparing a mixture solution of a zinc salt and a manganese salt; step 3, adjusting the silicon dioxide sol to be neutral or acidic; step 4, adding the mixture solution of the zinc salt and the manganese salt into the silicon dioxide sol to form a gelatin; step 5, drying the gelatin, keeping the temperature, grinding, reducing with keeping the temperature in a reductive atmosphere to obtain zinc manganese silicate. The preparation method has simple technique and low equipment requirement. The particles of the zinc manganese silicate phosphor prepared by the method have a regular size, uniform shape and good luminescent performance.
摘要:
Double core-shell fluorescent materials and preparation methods thereof are provided. The double core-shell fluorescent materials include inner core, inner shell coating the inner core and outer shell coating the said inner shell. The inner core is metal particle and the chemical constitution of the inner shell is silicon dioxide. The outer shell is fluorescent powder represented by the following chemical formula: (R1-x, Eux)2O3, wherein R is Y, Gd or combination thereof, 0.02≦x≦0.1. The double core-shell fluorescent materials with uniform and stable luminous effect not only increase luminous intensity, but also decrease usage amount of fluorescent powder by using metal particle as inner core.
摘要:
A luminescent element including nitride includes a luminescent film and a metal layer with a metal microstructure formed on a surface of the luminescent film; wherein the luminescent film has a chemical composition: Ga1-xAlxN:yRe, wherein Re represents the rare earth element, 0≦x≦1, 0
摘要:
A field emission light source device, comprising: cathode plate comprising substrate and cathode conductive layer disposed on surface of substrate, and anode plate comprising base formed from transparent ceramic material and anode conductive layer disposed on one surface of base, and insulating support member by which cathode plate and anode plate are integrally fixed, and vacuum-tight chamber formed with anode plate, cathode plate and insulating support member; anode conductive layer and the cathode plate are disposed opposite each other. Because of advantages of good electrical conductivity, high light transmittance, stable electron-impact resistance performance and uniform luminescence, using transparent ceramic as the base of the anode plate in the field emission light source device can increase electron beam excitation efficiency effectively, increase light extraction efficiency of the field emission light source device, and finally increase its luminous efficiency. A manufacturing method of the field emission light source device is also provided.
摘要:
A light emission apparatus (10) and a manufacturing method thereof are provided. The light emission apparatus includes a light emission base body (13) and a metal layer (14) with metal microstructure. The metal layer is set on the surface of the light emission base body. The material of light emission base body is transparent ceramic Y3Al5O12:Tb. By setting a metal layer with metal microstructure on the light emission base body, the interface between the metal layer and the light emission base body could form a surface plasmon under the cathode ray (16). The spontaneous emission of the transparent ceramic and the emission efficiency of the light emission base body could be enhanced by the effect of surface plasmon.
摘要:
A field emission anode plate (1), a field emission light source and a manufacturing method for the light source are provided. The field emission anode plate comprises a transparent ceramic base (10) and an anode conductive layer (11) provided on the surface of the transparent ceramic base which can be excited to produce light by cathode rays. The field emission light source comprises the field emission anode plate, a field emission cathode plate (2) and a supporter (3). The field emission cathode plate comprises a substrate (20) and a cathode conductive layer (21) provided on the surface of the substrate. The anode conductive layer and the cathode conductive layer are arranged opposite to each other, and two ends of the supporter are hermetically connected to the field emission anode plate and the field emission cathode plate respectively, thus the field emission anode plate, the field emission cathode plate and the supporter constitute a vacuum chamber. As the transparency and electron-impact resistance are improved and the corrosion and wear resistance properties are increased, the field emission anode plate is low-cost with luminance uniformity, and the field emission light source also exhibits high luminance intensity, luminance uniformity and a long service life.
摘要:
A rare earth-aluminium/gallate based fluorescent material and manufacturing method thereof are provided. Said rare earth-aluminium/gallate based fluorescent material comprises a core, and a shell which coats said core, wherein said core is a metal nanoparticle, and said shell is a fluorescent powder of chemical formula (Y1-xCex)3(Al1-yGay)5O12, 0