Abstract:
A transistor is constituted of a gate electrode 2, a gate insulation layer 3, a semiconductor layer 4 formed of an amorphous oxide, a source electrode 5, a drain electrode 6 and a protective layer 7. The protective layer 7 is provided on the semiconductor layer 4 in contact with the semiconductor layer 4, and the semiconductor layer 4 includes a first layer at least functioning as a channel layer and a second layer having higher resistance than the first layer. The first layer is provided on the gate electrode 2 side of the semiconductor layer 4 and the second layer is provided on the protective layer 7 side of the semiconductor layer 4.
Abstract:
A transistor is constituted of a gate electrode 2, a gate insulation layer 3, a semiconductor layer 4 formed of an amorphous oxide, a source electrode 5, a drain electrode 6 and a protective layer 7. The protective layer 7 is provided on the semiconductor layer 4 in contact with the semiconductor layer 4, and the semiconductor layer 4 includes a first layer at least functioning as a channel layer and a second layer having higher resistance than the first layer. The first layer is provided on the gate electrode 2 side of the semiconductor layer 4 and the second layer is provided on the protective layer 7 side of the semiconductor layer 4.
Abstract:
A transistor is constituted of a gate electrode 2, a gate insulation layer 3, a semiconductor layer 4 formed of an amorphous oxide, a source electrode 5, a drain electrode 6 and a protective layer 7. The protective layer 7 is provided on the semiconductor layer 4 in contact with the semiconductor layer 4, and the semiconductor layer 4 includes a first layer at least functioning as a channel layer and a second layer having higher resistance than the first layer. The first layer is provided on the gate electrode 2 side of the semiconductor layer 4 and the second layer is provided on the protective layer 7 side of the semiconductor layer 4.
Abstract:
Provided is a top gate thin film transistor, including on a substrate: a source electrode layer; a drain electrode layer; an oxide semiconductor layer; a gate insulating layer; a gate electrode layer including an amorphous oxide semiconductor containing at least one kind of element selected from among In, Ga, Zn, and Sn; and a protective layer containing hydrogen, in which: the gate insulating layer is formed on a channel region of the oxide semiconductor layer; the gate electrode layer is formed on the gate insulating layer; and the protective layer is formed on the gate electrode layer.
Abstract:
A driving circuit of a display element includes a current source circuit having a first transistor and a holding circuit for holding a gate voltage of the first transistor during a first period at an electric potential corresponding to a constant current to be supplied to the display element, and a control circuit including a second transistor connected in series to the current source circuit and connected in parallel to the display element and the capacitor element whose one terminal is connected to a gate of the second transistor and the other terminal is connected to a line, and controlling the light emission time of the display element by controlling the second transistor during a third period. A constant voltage is applied from the line during the first period. The gray-scale voltage is applied from the line during a second period, and the gate of the second transistor and the one terminal are short-circuited. In addition, an electric charge based on the difference between the gray-scale voltage and the gate voltage of the second transistor is accumulated in the capacitor element, and a sweep voltage is applied during the third period, so that the ON time of the second transistor is controlled.
Abstract:
There is provided a light emitting display apparatus including at least a light emitting element and a thin film transistor (TFT) for driving the light emitting element, characterized in that a mechanism is provided in which a semiconductor constituting the TFT is irradiated with at least a part of light whose wavelength is longer than a predetermined wavelength among the light emitted by the light emitting element.
Abstract:
An electronic device includes: multiple electronic elements each including a semiconductor film; and an element isolation region provided between adjacent ones of the multiple electronic elements, the element isolation region including a semiconductor film having a bandgap of 1.95 eV or more, an insulating film, and an element isolation electrode, the element isolation electrode being an electrode which is separated from the semiconductor film of the element isolation region by the insulating film and is applied with a voltage so as to increase a resistance of the semiconductor film of the element isolation region, to thereby electrically isolate the multiple electronic elements from one another.
Abstract:
Provided is a semiconductor device, including an electrode, a first insulator, a first semiconductor having a bandgap of 2 eV or greater, a second insulator, and a second semiconductor, which are stacked on one another, and at least further including one or more electrodes in contact with the first semiconductor and two or more electrodes in contact with the second semiconductor.
Abstract:
In a method of treating a semiconductor element which at least includes a semiconductor, a threshold voltage of the semiconductor element is changed by irradiating the semiconductor with light with a wavelength longer than an absorption edge wavelength of the semiconductor. The areal density of in-gap states in the semiconductor is 1013 cm−2eV−1 or less. The band gap may be 2 eV or greater. The semiconductor may include at least one selected from the group consisting of In, Ga, Zn and Sn. The semiconductor may be one selected from the group consisting of amorphous In—Ga—Zn—O (IGZO), amorphous In—Zn—O (IZO) and amorphous Zn—Sn—O (ZTO). The light irradiation may induce the threshold voltage shift in the semiconductor element, the shift being of the opposite sign to the threshold voltage shift caused by manufacturing process history, time-dependent change, electrical stress or thermal stress.
Abstract:
A channel layer is formed on a substrate by using an oxide semiconductor and then a sacrificial layer of an oxide containing In, Zn and Ga and representing an etching rate greater than the etching rate of the oxide semiconductor is formed on the channel layer. Thereafter, a source electrode and a drain electrode are formed on the sacrificial layer and the sacrificial layer exposed between the source electrode and the drain electrode is removed by means of wet etching.