-
1.
公开(公告)号:US09110221B2
公开(公告)日:2015-08-18
申请号:US13763090
申请日:2013-02-08
Applicant: Massachusetts Institute of Technology
Inventor: Anuradha M. Agarwal , Antonio Canciamilla , Francesco Morichetti , Stefano Grillanda , Lionel C. Kimerling , Andrea Melloni , Jurgen Michel , Vivek Raghunathan , Vivek Singh
CPC classification number: G02B6/03694 , G02B6/02033 , G02B6/122
Abstract: In a photonic waveguide, there is provided an undercladding layer and a waveguide core, having a cross-sectional height and width, that is disposed on the undercladding layer. The waveguide core comprises a waveguide core material having a thermo-optic coefficient. A refractive index tuning cladding layer is disposed on top of the waveguide core. The refractive index tuning cladding layer comprises a refractive index tuning cladding material having an adjustable refractive index and an absorption length at a refractive index tuning radiation wavelength. A thermo-optic coefficient compensation cladding layer is disposed on top of the refractive index tuning cladding layer. The thermo-optic coefficient compensation cladding layer comprises a thermo-optic coefficient compensation material having a thermo-optic coefficient that is of opposite sign to the thermo-optic coefficient of the waveguide core material. The thermo-optic coefficient compensation cladding layer provides at least partial compensation for the waveguide core thermo-optic coefficient.
Abstract translation: 在光子波导中,提供了具有横截面高度和宽度的下封层和波导芯,其设置在下封层上。 波导芯包括具有热光系数的波导芯材料。 折射率调谐包层设置在波导芯的顶部。 折射率调谐包层包括在折射率调谐辐射波长处具有可调折射率和吸收长度的折射率调谐包层材料。 热电系数补偿包层设置在折射率调谐包层的顶部。 热光系数补偿包层包括具有与波导芯材料的热光系数相反的热光系数的热光系数补偿材料。 热光系数补偿包层对波导芯热光系数提供至少部分补偿。
-
公开(公告)号:US11067754B2
公开(公告)日:2021-07-20
申请号:US16989448
申请日:2020-08-10
Applicant: Massachusetts Institute of Technology
Inventor: Lionel C. Kimerling , Jurgen Michel , Anuradha M. Agarwal , Kazumi Wada , Drew Michael Weninger , Samuel Serna
Abstract: Optical interconnects can offer higher bandwidth, lower power, lower cost, and higher latency than electrical interconnects alone. The optical interconnect system enables both optical and electrical interconnection, leverages existing fabrication processes to facilitate package-level integration, and delivers high alignment tolerance and low coupling losses. The optical interconnect system provides connections between a photonics integrated chip (PIC) and a chip carrier and between the chip carrier and external circuitry. The system provides a single flip chip interconnection between external circuitry and a chip carrier using a ball grid array (BGA) infrastructure. The system uses graded index (GRIN) lenses and cross-taper waveguide couplers to optically couple components, delivers coupling losses of less than 0.5 dB with an alignment tolerance of ±1 μm, and accommodates a 2.5× higher bandwidth density.
-
3.
公开(公告)号:US11204327B2
公开(公告)日:2021-12-21
申请号:US16691007
申请日:2019-11-21
Applicant: Massachusetts Institute of Technology
Inventor: Eveline Postelnicu , Samarth Aggarwal , Kazumi Wada , Jurgen Michel , Lionel C. Kimerling , Michelle L. Clark , Anuradha M. Agarwal
Abstract: A layer of amorphous Ge is formed on a substrate using electron-beam evaporation. The evaporation is performed at room temperature. The layer of amorphous Ge has a thickness of at least 50 nm and a purity of at least 90% Ge. The substrate is complementary metal-oxide-semiconductor (CMOS) compatible and is transparent at Long-Wave Infrared (LWIR) wavelengths. The layer of amorphous Ge can be used as a waveguide in chemical sensing and data communication applications. The amorphous Ge waveguide has a transmission loss in the LWIR of 11 dB/cm or less at 8 μm.
-
4.
公开(公告)号:US20130243383A1
公开(公告)日:2013-09-19
申请号:US13763090
申请日:2013-02-08
Inventor: Anuradha M. Agarwal , Antonio Canciamilla , Francesco Morichetti , Stefano Grillanda , Lionel C. Kimerling , Andrea Melloni , Jurgen Michel , Vivek Raghunathan , Vivek Singh
CPC classification number: G02B6/03694 , G02B6/02033 , G02B6/122
Abstract: In a photonic waveguide, there is provided an undercladding layer and a waveguide core, having a cross-sectional height and width, that is disposed on the undercladding layer. The waveguide core comprises a waveguide core material having a thermo-optic coefficient. A refractive index tuning cladding layer is disposed on top of the waveguide core. The refractive index tuning cladding layer comprises a refractive index tuning cladding material having an adjustable refractive index and an absorption length at a refractive index tuning radiation wavelength. A thermo-optic coefficient compensation cladding layer is disposed on top of the refractive index tuning cladding layer. The thermo-optic coefficient compensation cladding layer comprises a thermo-optic coefficient compensation material having a thermo-optic coefficient that is of opposite sign to the thermo-optic coefficient of the waveguide core material. The thermo-optic coefficient compensation cladding layer provides at least partial compensation for the waveguide core thermo-optic coefficient.
Abstract translation: 在光子波导中,提供了具有横截面高度和宽度的下封层和波导芯,其设置在下封层上。 波导芯包括具有热光系数的波导芯材料。 折射率调谐包层设置在波导芯的顶部。 折射率调谐包层包括在折射率调谐辐射波长处具有可调折射率和吸收长度的折射率调谐包层材料。 热电系数补偿包层设置在折射率调谐包层的顶部。 热光系数补偿包层包括具有与波导芯材料的热光系数相反的热光系数的热光系数补偿材料。 热光系数补偿包层对波导芯热光系数提供至少部分补偿。
-
5.
公开(公告)号:US11604147B2
公开(公告)日:2023-03-14
申请号:US17522819
申请日:2021-11-09
Applicant: Massachusetts Institute of Technology
Inventor: Eveline Postelnicu , Samarth Aggarwal , Kazumi Wada , Jurgen Michel , Lionel C. Kimerling , Michelle L. Clark , Anuradha M. Agarwal
Abstract: A layer of amorphous Ge is formed on a substrate using electron-beam evaporation. The evaporation is performed at room temperature. The layer of amorphous Ge has a thickness of at least 50 nm and a purity of at least 90% Ge. The substrate is complementary metal-oxide-semiconductor (CMOS) compatible and is transparent at Long-Wave Infrared (LWIR) wavelengths. The layer of amorphous Ge can be used as a waveguide in chemical sensing and data communication applications. The amorphous Ge waveguide has a transmission loss in the LWIR of 11 dB/cm or less at 8 μm.
-
6.
公开(公告)号:US20160024687A1
公开(公告)日:2016-01-28
申请号:US14877244
申请日:2015-10-07
Applicant: Massachusetts Institute of Technology
Inventor: Kevin Andrew McComber , Jifeng Liu , Jurgen Michel , Lionel C. Kimerling
CPC classification number: C30B25/18 , C23C16/04 , C23C16/06 , C30B23/04 , C30B25/04 , C30B29/08 , H01L21/02521 , H01L21/02532 , H01L21/0262 , H01L21/02639 , H01L27/1281 , H01L29/66742 , H01L29/78684
Abstract: There is provided a substrate with a lower growth confinement layer disposed thereon. An upper growth confinement layer is disposed above and vertically separated from the lower growth confinement layer. A planar lateral growth channel is provided between the upper and lower growth confinement layers with a vertical separation between the layers along the lateral growth channel. A germanium material growth seed of amorphous silicon is disposed at a site adjacent to the lateral growth channel. The upper growth confinement layer and the lower growth confinement layer each prohibits crystalline germanium material nucleation on the upper and lower growth confinement layers during exposure to GeH4 gas, for crystalline germanium material growth initiation in the lateral growth channel only at the growth seed site. Crystalline germanium material fills the lateral growth channel. A growth channel outlet provides formed crystalline germanium material from the lateral growth channel.
Abstract translation: 提供了其上设置有较低生长限制层的基底。 上部生长限制层设置在下部生长限制层的上方并与之垂直分离。 在上部和下部生长限制层之间提供平面侧向生长通道,沿着横向生长通道沿垂直分隔。 将非晶硅的锗材料生长种子设置在与横向生长通道相邻的位置处。 上部生长限制层和较低生长限制层各自在暴露于GeH 4气体期间在上部和下部生长限制层上禁止结晶锗材料成核,仅在生长种子位点仅在侧向生长通道中结晶锗材料生长开始。 晶体锗材料填充横向生长通道。 生长通道出口从侧向生长通道提供形成的结晶锗材料。
-
-
-
-
-