Abstract:
A method of manufacturing a semiconductor device is obtained which is capable of evading generation of a short circuit between wirings in an upper wiring layer even if a part of an upper surface of an FSG film is exposed by variations in a production step. After a USG film (4) is deposited to a thickness of 1 Hm over an entire surface of an FSG film (3), the USG film (4) is polished and removed by a thickness of 900 nm from an upper surface thereof by the CMP method. At this time, part of an upper surface of the FSG film (3) is exposed by variations in a production step. Next, the surface of the interlayer dielectric film (50) is cleaned with a cleaning liquid whose etching rate to the FSG film (3) and etching rate to the USG film (5) are substantially the same. Such a cleaning liquid may be, for example, an ammonia hydrogen peroxide mixture of NH4OH:H2O2:H2O=1:1:20. The structure shown in FIG. 5 is dipped in the above-mentioned ammonia hydrogen peroxide mixture for 60 seconds to clean the surface of the interlayer dielectric film (50).
Abstract translation:获得制造半导体器件的方法,即使通过制造步骤的变化使FSG膜的上表面的一部分露出,也能够避免在上布线层中的布线之间的短路的产生。 在USG膜(4)在FSG膜(3)的整个表面上沉积厚度为1m的USG膜(4)之后,将USG膜(4)从其上表面抛光并去除900nm的厚度, CMP方法。 此时,FSG膜(3)的上表面的一部分通过生产步骤的变化而暴露。 接下来,用对FSG膜(3)的蚀刻速率和对USG膜(5)的蚀刻速率基本相同的清洗液清洁层间绝缘膜(50)的表面。 这样的清洗液可以是例如NH 4 OH:H 2 O 2 :H 2 O = 1:1:20的氨过氧化氢混合物。 图1所示的结构 5浸渍在上述氨过氧化氢混合物中60秒以清洁层间电介质膜(50)的表面。
Abstract:
A method of manufacturing a semiconductor device is obtained which is capable of evading generation of a short circuit between wirings in an upper wiring layer even if a part of an upper surface of an FSG film is exposed by variations in a production step. After a USG film (4) is deposited to a thickness of 1 &mgr;m over an entire surface of an FSG film (3), the USG film (4) is polished and removed by a thickness of 900 nm from an upper surface thereof by the CMP method. At this time, a part of an upper surface of the FSG film (3) is exposed by variations in a production step. Next, the surface of the interlayer dielectric film (50) is cleaned with a cleaning liquid whose etching rate to the FSG film (3) and etching rate to the USG film (5) are substantially the same. Such a cleaning liquid may be, for example, an ammonia hydrogen peroxide mixture of NH4OH:H2O2:H2O=1:1:20. The structure shown in FIG. 5 is dipped in the above-mentioned ammonia hydrogen peroxide mixture for 60 seconds to clean the surface of the interlayer dielectric film (50).
Abstract translation:获得制造半导体器件的方法,即使通过制造步骤的变化使FSG膜的上表面的一部分露出,也能够避免在上布线层中的布线之间的短路的产生。 在USG膜(4)在FSG膜(3)的整个表面上沉积1μm的厚度之后,USG膜(4)从上表面抛光并去除900nm的厚度, CMP方法。 此时,FSG膜(3)的上表面的一部分通过制造工序的变形而露出。 接下来,用对FSG膜(3)的蚀刻速率和对USG膜(5)的蚀刻速率基本相同的清洗液清洁层间绝缘膜(50)的表面。 这样的清洗液可以是例如NH 4 OH:H 2 O 2 :H 2 O = 1:1:20的氨过氧化氢混合物。 图1所示的结构 5浸渍在上述氨过氧化氢混合物中60秒以清洁层间电介质膜(50)的表面。
Abstract:
Implemented is a method of manufacturing a contact structure having a combination of formation of a buried wiring and that of a low dielectric constant interlayer insulating film in which a connecting hole to be formed in a low dielectric constant interlayer insulating film does not turn into an abnormal shape. A fourth interlayer insulating film 11 is formed on an upper surface of a third interlayer insulating film 10. Next, patterning for a wiring trench and a connecting hole is carried out into the fourth interlayer insulating film 11 and the third interlayer insulating film 10, respectively. Then, a pattern of the connecting hole is first formed in a third low dielectric constant interlayer insulating film 9. Thereafter, a second interlayer insulating film 8 exposed in the pattern is removed and a pattern of the wiring trench is formed in the third interlayer insulating film 10. Subsequently, second and third low dielectric constant interlayer insulating films 7 and 9 are etched, and the wiring trench and the connecting hole are formed at the same time. Thus, a photoresist can be formed again without the second and third low dielectric constant interlayer insulating films 7 and 9 exposed, and an abnormal shape is generated in the connecting hole with difficulty.
Abstract:
There is provided a semiconductor device and method of fabricating the same that employs an insulation film of a borazine-based compound to provided enhanced contact between a material for insulation and that for interconnection, increased mechanical strength, and other improved characteristics. The semiconductor device includes a first insulation layer having a recess with a first conductor layer buried therein, an etching stopper layer formed on the first insulation layer, a second insulation layer formed on the etching stopper layer, a third insulation layer formed on the second insulation layer, and a second conductor layer buried in a recess of the second and third insulation layers. The second and third insulation layers are grown by chemical vapor deposition with a carbon-containing borazine compound used as a source material and the third insulation layer is smaller in carbon content than the second insulation layer.
Abstract:
A semiconductor device according to the invention is a semiconductor device which includes a low dielectric constant film of which the relative dielectric constant is less than 3.5, is provided with one or more seal rings that are moisture blocking walls in closed loop form in a plan view, and where at least one of the seal rings includes a seal ring protrusion portion in inward protruding form in the vicinity of a chip corner.
Abstract:
A first layer metal wire, an SiOF film and an F diffusion prevention film are formed on a surface of a base layer including a substrate, elements formed on the substrate and an insulator layer formed to cover the substrate and the elements. The F diffusion prevention film may be prepared from a silicon oxynitride film or a silicon oxide film containing Si—H bonds. A spacer film is formed on a surface of the F diffusion prevention film and its surface is flattened. A second layer metal wire is formed on a surface of the spacer film. Thus implemented is a semiconductor device comprising an F diffusion prevention film preventing F atoms contained in an SiOF film from diffusing into an upper metal wire with the F diffusion prevention film not etched in formation of the upper metal wire and a method of manufacturing a semiconductor device not directly polishing an SiOF film by CMP.
Abstract:
In a semiconductor having a multilayer wiring structure device on a semiconductor substrate, the multilayer wiring structure includes an interlayer insulating film having at least an organic siloxane insulating film. The organic siloxane insulating film has a relative dielectric constant of 3.1 or less, a hardness of 2.7 GPa or more, and a ratio of carbon atoms to silicon atoms between 0.5 and 1.0, inclusive. Further, the multilayer wiring structure may include an insulating layer having a ratio of carbon atoms to silicon atoms not greater than 0.1, the insulating layer being formed on the top surface of the organic siloxane insulating film as a result of carbon leaving the organic siloxane insulating film.
Abstract:
In a semiconductor having a multilayer wiring structure device on a semiconductor substrate, the multilayer wiring structure includes an interlayer insulating film having at least an organic siloxane insulating film. The organic siloxane insulating film has a relative dielectric constant of 3.1 or less, a hardness of 2.7 GPa or more, and a ratio of carbon atoms to silicon atoms between 0.5 and 1.0, inclusive. Further, the multilayer wiring structure may include an insulating layer having a ratio of carbon atoms to silicon atoms not greater than 0.1, the insulating layer being formed on the top surface of the organic siloxane insulating film as a result of carbon leaving the organic siloxane insulating film.
Abstract:
A hole is formed in an insulating film containing silicon and carbon. The insulating film has a density or a carbon concentration varying gradually in the direction of the thickness thereof.
Abstract:
A hole is formed in an insulating film containing silicon and carbon. The insulating film has a density or a carbon concentration varying gradually in the direction of the thickness thereof.