Abstract:
An optical fiber preform includes a core portion, in which the core portion includes an alkali-metal-doped core glass portion doped with an alkali metal, the maximum concentration of oxygen molecules in the core portion is 30 mol ppb or more, and the average concentration of the alkali metal in the core portion is 5 atomic ppm or more. A method of manufacturing an optical fiber preform includes an alkali-metal-doping step of doping a pipe composed of silica-based glass with an alkali metal, an oxygen-molecule-doping step of doping the glass pipe with oxygen molecules, and a collapsing step of collapsing the glass pipe by heating the glass pipe, in which the optical fiber preform is manufactured.
Abstract:
A method for producing an optical fiber preform according to the present invention includes a collapse step of collapsing a silica-based glass tube by heating with a heat source continuously traversed in the longitudinal direction of the glass tube to form a first glass rod to be formed into a core part or part of a core part of an optical fiber, the glass tube having an inner surface doped with an alkali metal, in which the glass tube has a maximum alkali metal concentration of 500 to 20,000 atomic ppm, a maximum chlorine concentration of 0 to 1000 atomic ppm, and a maximum fluorine concentration of 0 to 10,000 atomic ppm, and in which in the collapse step, the maximum temperature of the outer surface of the glass tube is 2000° C. to 2250° C., and the traverse speed of the heat source is 30 mm/min to 100 mm/min.
Abstract:
An optical fiber preform has a core portion having a first core portion including a central axis, a second core portion disposed around the first core portion, and a third core portion disposed around the second core portion. The first core portion contains 10 atomic ppm or more of an alkali metal and 10 to 600 atomic ppm of chlorine, the second core portion contains 10 atomic ppm or less of the alkali metal and 10 to 600 atomic ppm of chlorine, and the third core portion contains 10 atomic ppm or less of the alkali metal and 2,000 atomic ppm or more of chlorine. An optical fiber has a core region doped with an alkali metal and chlorine, wherein the minimum concentration of chlorine in the core region is 1,000 atomic ppm or more, and the average concentration of the alkali metal therein is 0.2 atomic ppm or more.
Abstract:
There is provided a semiconductor device having a reduced number of external terminals allocated for address input to receive access from outside, while realizing a high-speed response to an access from outside.The semiconductor device employs, in order to allow other external devices to directly access resources it possesses in its own address space, in an external interface circuit, external terminals which input a part of the address signal required for access from outside, a supplementary register which supplements the upper portion of address information that has been input from the external terminals, a mode register accessible from outside, and an address control circuit which generates an address signal to access the address space in a form based on information input from the external terminals, required supplementary information, and mode information of the mode register.
Abstract:
In a glass processing method according to the invention, in the case of performing chemical vapor deposition or diameter shrinkage of a substrate glass tube G by relatively moving a heating furnace 20 comprising a heating element 21 for annularly enclosing the circumference of the substrate glass tube in a longitudinal direction of the substrate glass tube G with respect to the substrate glass tube G in which an outer diameter is 30 mm or more and a wall thickness is 3 mm or more and is less than 15 mm and an ovality of the outer diameter is 1.0% or less using a glass processing apparatus 1, a temperature of at least one of the heating element 21 and the substrate glass tube G is measured and the amount of heat generation of the heating element 21 is adjusted based on the measured temperature.
Abstract:
A container for an optical fiber coil and an optical fiber module including the container is provided, wherein an excess length portion of a pigtail fiber is accommodated in the container and the remaining portion can be drawn out from the container. The container includes a first part for accommodating a coil having a functional optical fiber, and a second part disposed on an outer periphery side of the first part and windingly accommodating a pigtail fiber that is optically connected to the functional optical fiber. The second part has a gap that extends over the entirety of the outer periphery, and communicates with the exterior. The optical fiber module includes the container, the coil having the functional optical fiber accommodated in the first part of the container, and the pigtail fiber that is optically connected to the functional fiber and that has a portion windingly accommodated in the second part.