Abstract:
An ignition device according to the present invention includes: an ignition plug, which includes a first electrode, a second electrode, and a dielectric body arranged between the electrodes; an AC power supply configured to generate an AC voltage to be applied between the electrodes; a thermal plasma detection portion configured to output a thermal plasma occurrence signal when thermal plasma has occurred between the electrodes; and an application time period determination portion configured to determine an application time period for the AC voltage during one cycle of the internal combustion engine in advance before the application, and when the thermal plasma occurrence signal is received while the AC voltage is being applied based on the application time period, change the application time period so as to shorten the application time period.
Abstract:
A power supply apparatus includes a power supply for supplying power to a laser oscillator. A reactor has one end serially connected to the laser oscillator and another end serially connected to the power supply, and a parallel diode configures a closed circuit for serial connection of the laser oscillator and the reactor. A current detector detects a current flowing in the reactor, and a first switching device is connected in parallel to the laser oscillator and drives the laser oscillator with pulses. An energy consumption circuit prefetches a current command value based on a control signal from a controller upon driving the laser oscillator with pulses, and when the current command value is smaller than a current command value of a previous pulse, the energy consumption circuit consumes energy until the current command value reaches a predetermined target current value.
Abstract:
A laser diode-driving power supply includes a constant current source that supplies current to LDs, a switching element connected in parallel to the LDs, and a control unit that controls the constant current source and performs on-off control of the switching element. The control unit compares a first current command value and a second current command value for controlling current output from the constant current source, and when the second current command value input after the first current command value is smaller than the first current command value, applies to the LDs a voltage in the range of a voltage at which current flows through the LDs to a voltage less than the lasing threshold of the LDs when there is no output from the LDs.
Abstract:
An ozone generator and an internal combustion engine with the ozone generator that can raise ozone additive rate of whole intake air, while suppressing pressure loss in the intake pipe from increasing. The internal combustion engine with an ozone generator includes a tubular intake pipe, through an inner region of which air flows, an ozone generator having an electrode plate that makes ozone and is disposed in the inner region or in the intake pipe, and a limiter that limits the flow of air in the inner region of the intake pipe; the electrode plate has a planar dielectric and high-voltage-side and low-voltage-side electrodes adhered and fixed to the dielectric and is formed in a shape of a plate extending in a direction in which air flows.
Abstract:
A power source device includes a capacitive load; and an AC power source, as a voltage source, which applies AC voltage to the capacitive load. A series circuit composed of an inductor and a capacitor is connected to the AC power source. A series circuit composed of a load inductor and the capacitive load is connected in parallel to one of the inductor or the capacitor. If an inductance of the inductor is defined as Lp, a capacitance of the capacitor is defined as Cp, an inductance of the load inductor is defined as Ls, an equivalent capacitance of the capacitive load is defined as Cs, and a frequency of the AC power source is defined as fv, the following expressions are satisfied,
Abstract:
A change amount per unit time of an engine output command for controlling engine output of an internal combustion engine is calculated as an engine output increasing rate, and a power supply device is controlled so that power corresponding to the calculated engine output increasing rate is supplied to a combustion promoter generation device. The combustion promoter generation device generates a combustion promoter through the power supplied from the power supply device to supply the combustion promoter to a combustion chamber of the internal combustion engine, and a generation amount of the combustion promoter increases as the supplied power increases. In this manner, the generation amount of the combustion promoter is adjusted.
Abstract:
A current control device for controlling, on the basis of a current command value input from an external device, a light-emitting unit current flowing from a power supply device to a light-emitting unit that includes one or a plurality of laser diodes, includes: a switching element coupled in parallel to the light-emitting unit; and a pulse-width-modulation control circuit unit to provide pulse width modulation control of the switching element in a case in which an output current output from the power supply device is greater than a present current command value or a next current command value upon a start of supply of, upon a termination of supply of, or during supply of, the light-emitting unit current.
Abstract:
A pulsed power supply apparatus includes a plurality of first inductors arranged in a first column in series connection; a plurality of second inductors arranged in a second column in series connection; a plurality of capacitors; a plurality of negative-side switching elements; a plurality of positive-side switching elements; a first positive terminal switching element connected to a first inductor of the plurality of first inductors that is located at one end of the plurality of first inductors and to a first output terminal; and a first negative terminal switching element connected to a second inductor of the plurality of second inductors that is located at one end of the plurality of second inductors and to the first output terminal.
Abstract:
An insulation detector for highly accurately detecting or measuring, with a simple configuration, insulation resistance of a load or an apparatus to a ground or a housing and connected to an electric apparatus including one or both of an intra-apparatus capacitor and a battery, the insulation detector including an intra-insulation detector capacitor, a voltage detecting unit that detects a voltage of the intra-insulation detector capacitor, and a current-path forming switch for connecting the ground or the housing, the intra-apparatus capacitor, and the intra-insulation detector capacitor in series and forming a current path including insulation resistance of the electric apparatus. The insulation detector measures the insulation resistance by measuring a time constant of a change in the voltage of the intra-insulation detector capacitor. A capacitance value of the intra-insulation detector capacitor is a value negligible in the measurement of the insulation resistance compared with a capacitance value of the intra-apparatus capacitor.
Abstract:
An electric discharge machining apparatus includes: electrodes E1 to En the total quantity of which is equal to N; an alternating-current power source G; and capacitors C1 to Cn the total quantity of which is equal to N. The alternating-current power source G applies an alternating voltage commonly to the electrodes E1 to En. One end of each of the capacitors C1 to Cn is connected to a corresponding one of the electrodes E1 to En, whereas the other ends of the capacitors C1 to Cn are commonly connected to the alternating-current power source G.