摘要:
The present invention provides a plural resistance-capacitance (PRC) electrical discharge machining system comprising a control module, a digital electronic module, a driving module, and a discharge module. The control module allows the user to input a command and output a control signal accordingly. The digital electronic module processes the control signal and outputs a sequence signal to the driving circuit. The driving module amplifies the sequence signal and then outputs a driving signal to the discharge module. The discharge module then controls and drives a plurality of transistors to open circuits and break circuits according to the driving signal for controlling the charging and discharging of a plurality of capacitors of the discharge module in the electrical discharge machining. The present invention can increase the amount of discharge in a machining process, and improves the efficiency thereof.
摘要:
The present invention is equipped with a series circuit that includes a DC power supply, switching elements and a diode for supplying DC or AC current pulses to a machining gap between a machining electrode and a workpiece, diodes that regulate a direction of the current flow to one direction, and a control unit that controls the switching elements. When the control unit generates a current pulse having a triangular waveform by an inductance that is present in the series circuit, the control unit controls the switching elements in order that a current-pulse time ratio that is a ratio between the non-current time and the current continuation time in the current pulse is equal to or lower than 1/5.
摘要:
An electric discharge machining apparatus includes a power supply, an electrode gap formed from an electrode and a workpiece, a current limiting resistor connected between the power supply and the electrode gap, switching elements that turns on and off application of a voltage from the power supply to the electrode gap, an inductance element connected in series between the switching elements and the electrode gap, and a control unit that controls the switching elements. The control unit causes the switching elements to perform ON/OFF operations according to a switching pattern having an on-pulse time width (ΔTon) in which a voltage of the electrode gap can reach a voltage value of the power supply in an on-pulse time and a pause time width (ΔToff) equal to or longer than a time width (Δtic) of a discharge current flowing during the capacitor discharge and shorter than a cycle (ΔTso) of the self-excited oscillation.
摘要:
The present invention includes a series circuit that includes a DC power supply and a switching element for supplying a DC or AC current pulse to a machining gap between a machining electrode and a workpiece; and a control unit that controls the switching element, wherein when generating a current pulse having a triangular shape by an inductance present on the series circuit, the control unit controls on-time and off-time of the switching element such that a peak value of an arbitrary current pulse in a pulse train including a plurality of current pulses changes.
摘要:
The device for machining by electroerosion comprises an electrode-tool (EO) and an electrode-workpiece (EP) constituting the opposite poles of a working gap (GA) and an electrical circuit with a double voltage source (UD) connected to a supply network (A) arranged so as to produce erosive discharges between the electrode-tool (EO) and the electrode-workpiece (EP). This double voltage source (UD) comprises a first (U1) and a second (U2) voltage source connected galvanically to each other by their poles. This double source (UD) is connected to the working gap by at least four separate branches (B1 to B4) of which at least one comprises a self-induction element (LL, LL). Switching elements (SW1, SW2) permit producing by selective connection of the branches at least two increasing current slopes and at least two decreasing current slopes.
摘要:
Charge accumulated in a capacitor is used to provide a processing current flow between a target and an electrode. When a diode is turned on, a first dc power supply is used to provide the processing current flow between the target and the electrode. In this state, after a lapse of a predetermined time, the current supply using the first dc power supply is stopped, and an induced electromotive voltage, induced by two floating reactors, is used to rapidly drop the processing current flowing between the target and the electrode, while charging the capacitor.
摘要:
A power supply (100) and a method for electric discharge machining by repeatedly providing a current pulse to a working gap (3) formed between a tool electrode (1) and a workpiece (2) includes a d.c. power source (E), first switching elements (Tr1-Trn) connected between the d.c. power source and the working gap, capacitors (C1-C8) connected in parallel with the working gap, second switching elements (67) for controlling current flow from the capacitor to the working gap, a detector (50) for detecting start of an electric discharge, and a controller (20) for controlling the first switching elements and the second switching elements in response to the detector. Current is supplied from the d.c. power source through the first switching elements to the working gap only for a first time interval (&tgr; ON) starting from the commencement of electric discharge, and a current is supplied from the capacitor through the second switching elements to the working gap for only a second time interval (T) is shorter than the first time interval, starting from the commencement of an electric discharge.
摘要:
Charge accumulated in a capacitor is used to allow a processing current to flow between a target and an electrode. When a diode is turned on, a first dc power supply is used to allow the processing current to flow between the target and the electrode. In this state, after a lapse of a predetermined time, the current supply using the first dc power supply is stopped, and an induced electromotive voltage, induced by two floating reactors, is used to rapidly drop the processing current flowing between the target and the electrode, while charging the capacitor.
摘要:
First power supply circuit 8, second power supply circuit 6, and third power supply circuit 9 are connected to form a power supply unit 5. The first power supply circuit 8 includes a direct current power supply 8A and switching element 8B. The power supply circuit 8 does not include any substantial resistance, and has comparatively low inductance and impedance characteristics. The power supply circuit 6 includes a direct current power supply 6A, switching element 6B, and current limiting resistor 6C. The power supply circuits 6, 8, and 9 are connected to the gap using a cable 11 as a common interconnect. A high frequency alternating current circuit is formed by the power supply circuit 8, conductor 11, coupling transformer 13, and the gap. In this event, switches 6F, 6G, 9F, and 9G, associated with power supply circuits 6 and 9, are opened, and the power supply circuits 6 and 9 are completely disconnected from the above high frequency alternating current circuit. It is preferable that the switches 6G, 6F, 9F, and 9 G be butt-type switch devices which will completely disconnect and connect the power supply circuits 6 and 8. Also, when using the high frequency alternating current, it is desirable to use an appropriate detection device 30 having a photocoupler 35 as the means for detecting the gap voltage.
摘要:
A power supply for an electroerosion machine having a switching element which controls the machining current in the gap. The value of the current is compared with a predetermined voltage and the signal generated based on this comparation is provided to a logic gate, advantageously and "AND" gate, whose output signal is applied to the control electrode of the switching element. Electrode consumption is reduced by using a generally step-type current waveform signal. Machining current during the discharge period may also be controlled to more closely approximate a square wave so that shifting to a faster machining rate can be easily accomplished by accepting some sacrifice in electrode consuption. Preferably, two or more switching and gating devices are used to permit gap current to flow intermittently during the entire discharge period.