Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes obtaining data for transmission to a wireless communication device, the device being configured to process incoming transmissions based on an aggregate data unit format that specifies signaling for aggregating multiple medium access control (MAC) protocol data units (MPDUs); generating, based on the data and the aggregate data unit format, an aggregate MPDU (A-MPDU) that includes a single MPDU having a length greater than zero, the single MPDU residing in a subframe of the A-MPDU; setting a delimiter of the subframe to indicate that the single MPDU is the only MPDU within the A-MPDU that has a length greater than zero, and to cause the device to accept the A-MPDU without a corresponding block acknowledgement agreement; including, in a physical (PHY) frame, the A-MPDU; and transmitting the PHY frame to the device.
Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes obtaining data for a transmission to a wireless communication device. The wireless communication device can be configured to process incoming transmissions based on an aggregate data unit format that specifies signaling for aggregating multiple medium access control (MAC) data units. The technique includes, in a physical (PHY) frame, an aggregate data unit that is based on the data and the aggregate data unit format, the aggregate data unit including a single MAC data unit. The technique includes, in the PHY frame, an indication to signal that the MAC data unit in the aggregate data unit is singular and to cause the wireless communication device to accept the aggregate data unit without a corresponding block acknowledgement agreement.
Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes generating a physical frame and causing a transmission of the physical frame to the wireless communication device. The physical frame includes (i) one or more medium access control data units that encapsulate data for a wireless communication device, (ii) a medium access control layer pad that includes one or more padding delimiters, and (iii) a physical layer pad, wherein a length of the medium access control layer pad and a length of the physical layer pad are based on the physical frame. The one or more padding delimiters can include an end-of-frame flag to inform the wireless communication device to stop receiving a remaining portion of the physical frame.
Abstract:
A first communication device receives a first data unit from a second communication device via one or more communication channels. The first data unit includes an indication of a first set of one or more sub-channels allocated to the first communication device, and the first data unit is configured to prompt the first communication device to transmit channel availability information as part of a subsequent orthogonal frequency division multiple access (OFDMA) transmission. The first communication device determines channel availability information for the one or more communication channels, and when the first communication device determines that at least one of the communication channels is idle, the first communication device transmits a second data unit to the second communication device in one or more sub-channels allocated to the first communication device as part of the OFDMA transmission, the second data unit including the channel availability information.
Abstract:
A system including a physical layer module and a control module. The physical layer module is configured to generate a first clear channel assessment for a first sub-channel of a communication channel and generate a second clear channel assessment for a second sub-channel of the communication channel. The first clear channel assessment indicates whether the first sub-channel is free or busy. The second clear channel assessment indicates whether the second sub-channel is free or busy. The control module is configured to, in response to the second sub-channel being busy, extend a duration of the second clear channel assessment by a predetermined period of time, and transmit data via (i) only the first sub-channel or (ii) both the first sub-channel and the second sub-channel based on (a) the first clear channel assessment, (b) the second clear channel assessment, and (c) the extended duration of the first clear channel assessment.
Abstract:
A first communication device determines one or more parameters related to a format of a media access control layer (MAC) data unit for an uplink (UL) multi-user (MU) transmission. The format of the MAC data unit for the UL MU transmission is different than a format of a MAC data unit for an UL single user (SU) transmission. The first communication device generates one or more data units that include the one or more parameters. The first communication device transmits the one or more data units to a plurality of second communication devices to inform the plurality of second communication devices of the format of the MAC data unit for UL MU transmissions by the plurality of second communication devices to the first communication device.
Abstract:
Systems and techniques relating to wireless communications are described. A described technique includes generating a physical frame, the physical frame including (i) spatially steered length fields and (ii) spatially steered frames that respectively include aggregated medium access control data units (A-MPDUs) that encapsulate data, the steered length fields respectively indicating lengths of the A-MPDUs in number of four-octet units. Generating the physical frame can include including after an A-MPDU of the A-MPDUs in a steered frame of the steered frames, (i) a medium access control layer pad and (ii) a physical layer pad. A length of the medium access control layer pad and a length of the physical layer pad can be based on the physical frame.
Abstract:
A system including a physical layer module and a control module. The physical layer module is configured to generate a first clear channel assessment for a first sub-channel of a communication channel and generate a second clear channel assessment for a second sub-channel of the communication channel. The first clear channel assessment indicates whether the first sub-channel is free or busy. The second clear channel assessment indicates whether the second sub-channel is free or busy. The control module is configured to, in response to the second sub-channel being busy, extend a duration of the second clear channel assessment by a predetermined period of time, and transmit data via (i) only the first sub-channel or (ii) both the first sub-channel and the second sub-channel based on (a) the first clear channel assessment, (b) the second clear channel assessment, and (c) the extended duration of the first clear channel assessment.
Abstract:
According to one embodiment, an apparatus includes a first processing unit operating according to a first clock, a second processing unit operating according to a second clock running separately from the first clock, and a synchronization controller coupled to the first communication unit and the second communication unit. The synchronization controller is configured to (i) cause the first communication unit to generate a first indication of time at which the first processing unit transmits a signal to the second processing unit, according to the first clock, (ii) cause the second processing unit to generate a second indication of time at which the second processing unit receives the signal, according to the second clock, and (iii) determine an offset between the first clock and the second clock based on the first indication of time and the second indication of time.
Abstract:
A first communication device generates and transmits to a second communication device: first and second information elements that respectively indicate capabilities regarding physical layer protocol data units (PPDUs) conforming to a first communication protocol and a second communication protocol. The first communication device generates and transmits a MAC data unit that includes a number corresponding to a maximum number spatial streams supported by the first communication device. The number in the MAC data unit, and one or more of i) the first information element, ii) the second information element, and iii) other information in the MAC data unit, indicate first and second maximum numbers of spatial streams supported by the first communication device with respect to PPDUs conforming to the first communication protocol, and PPDUs conforming to the second communication protocol, respectively.