Abstract:
A reformer reactor 10 for producing a hydrogen-rich gas includes a first zone 18, a second zone 20, a third zone 22, a fourth zone 24 and a product gas collection space 40. The zones are sequentially adjacent. A flow path P1 is provided for directing flow of a reaction stream in diverging directions from the first zone 18 into the second zone 20, the flow of the reaction stream continuing in the same general diverging directions through the second zone 20 and into and through the third and fourth zones 22,24. Directing the flow in diverging directions permits flow into and through a zone over more than just a single cross-sectional geometry of the zone or a single cross-section of the flow path transverse to the direction of flows. This configuration can be used to require a lower pressure for flowing the reaction stream so as to reduce the parasitic requirements of the reactor. This configuration can also be used to increase throughput of the reactor.
Abstract:
An apparatus and a method are disclosed for converting hydrocarbon fuel or an alcohol into hydrogen gas and carbon dioxide. The apparatus includes a first vessel having a partial oxidation reaction zone and a separate steam reforming reaction zone that is distinct from the partial oxidation reaction zone. The first vessel has a first vessel inlet at the partial oxidation reaction zone and a first vessel outlet at the steam reforming zone. The reformer also includes a helical tube extending about the first vessel. The helical tube has a first end connected to an oxygen-containing source and a second end connected to the first vessel at the partial oxidation reaction zone. Oxygen gas from an oxygen-containing source can be directed through the helical tube to the first vessel. A second vessel having a second vessel inlet and second vessel outlet is annularly disposed about the first vessel. The helical tube is disposed between the first vessel and the second vessel and gases from the first vessel can be directed through second vessel.
Abstract:
A method for converting hydrocarbon fuel into hydrogen gas and carbon dioxide within a reformer 10 is disclosed. According to the method, a stream including an oxygen-containing gas is directed adjacent to a first vessel 18 and the oxygen-containing gas is heated. A stream including unburned fuel is introduced into the oxygen-containing gas stream to form a mixture including oxygen-containing gas and fuel. The mixture of oxygen-containing gas and unburned fuel is directed tangentially into a partial oxidation reaction zone 24 within the first vessel 18. The mixture of oxygen-containing gas and fuel is further directed through the partial oxidation reaction zone 24 to produce a heated reformate stream including hydrogen gas and carbon monoxide. Steam may also be mixed with the oxygen-containing gas and fuel, and the reformate stream from the partial oxidation reaction zone 24 directed into a steam reforming zone 26. High- and low-temperature shift reaction zones 64,76 may be employed for further fuel processing.
Abstract:
A thermal expansion valve comprises a metal tube for flowing a fluid therethrough, and a metal rod fixed only at a first end in the tube and disposed wholly within the tube, the metal tube having a greater coefficient of expansion than the metal rod. A plug having an orifice therethrough is disposed in the tube proximate a free end of the rod. Lengthwise thermal expansion and contraction of the tube and the rod caused by the temperature of the fluid in the tube and around the rod causes the free end of the rod to retreat from the plug to increase flow of the fluid therethrough, and causes the free end of the rod to approach the plug to restrict flow of the fluid therethrough, respectively.
Abstract:
A burner assembly has a combustion chamber in which combustion takes place in an elongate centrally disposed combustion tube. An outer housing encases the combustion tube and provides an annular space between an inner wall of the housing and the combustion tube. Part of the exhaust gases exiting from the combustion tube are diverted from the downstream end thereof to be returned through the annular space to the upstream end of the combustion tube. Fuel is injected into the diverted exhaust gases, volatilized when in liquid form and mixed with the diverted gases. The fuel and gas mixture is further combined with a buffer gas and becomes entrained into and mixed with a high velocity of combustion air which is injected into the upstream end of the combustion tube. The flame temperature may be monitored and the quantity of the buffer gas added may be controllably varied based on temperature readings from the monitoring process to minimize the generation of nitrous oxides.
Abstract:
A forced hot air furnace having a continuously wet recuperative heat exchanger. The recuperative heat exchanger is positioned in the hot air chamber at an upward incline from the firebox to the outside flue. Inclined positioning enables heat exchanger condensate to drain counter to combustion products. Condensate is collected in a reservoir located in the firebox. Combustion products flow over the reservoir thereby becoming elevated in dew point before entering the heat exchanger. Consequently, the amount of condensation formed in the heat exchanger is substantially increased over conventional heat exchangers. Condensate will form along the entire length of the heat exchanger resulting in all wet operation. In another embodiment, continuously wet operation is achieved without a water reservoir. In still another embodiment, the continuously wet recuperative heat exchanger is coupled to the output of a non-recuperative heat exchanger. In an alternate embodiment, a continuously wet recuperative heat exchanger is utilized to heat a liquid.
Abstract:
Gas-solids transport and heat exchange techniques are disclosed wherein solid particulate material is circulated in a "figure 8" or a circular flow path for selective contact and/or direct heat exchange with gaseous media. The particulate material is introduced into streams of gaseous media at spaced locations in the flow path and subsequently separated from the gaseous streams following contact and/or heat exchange therewith. The gaseous streams are maintained separate from one another by loose packed bed columns of particulate material formed in the flow path and used to introduce the particulate material into the gaseous streams. The flow rate of the particulate material is regulated by the controlled biasing of particulate material from each of the columns thereof directly into the gaseous streams, and the particulate material is circulated solely through the use of the gaseous media and the force of gravity. The particulate material is circulated in cocurrent relationship with each of the gaseous streams in figure 8 flow path systems and, in circular flow path systems, the particulate material is circulated in cocurrent relationship with one of the gaseous streams and in countercurrent relationship with the other of the gaseous streams. In heat exchange applications, heat transfer between the streams of gaseous media is provided as a function of the flow rate of the particulate material and the relative flow rates of the streams of gaseous media.
Abstract:
A system for making and storing hydrogen comprises an IC engine, a thermal reactor to convert hydrocarbon fuels to reformate, and a separation means to separate the reformate into a hydrogen stream and a hydrogen depleted reformate stream. The hydrogen stream is compressed and stored. The hydrogen depleted reformate stream is split and sent to a thermal reactor and the IC engine. The IC engine drives the compressor for hydrogen as well as the compressor for the fuel inlet to the system. The described system and process achieves high efficiency in fuel conversion and hydrogen storage.
Abstract:
A hydrocarbon fuel processing reactor for generating a hydrogen-enriched reformate from hydrocarbons is disclosed. A plurality of shells are arranged coaxially having a gap defined between each of the successive shells, thereby forming a plurality of coaxial zones. The shells are configured to permit heat transfer from one zone to another. Fluid streams for reactions within the reactor are preheated by heat transfer from adjacent zones.
Abstract:
A reformer for producing a hydrogen-rich gas includes a first zone, a second zone, a third zone, a fourth zone and a product gas collection space. The zones are sequentially adjacent. A flow path is provided for directing flow of a reaction stream in diverging directions from the first zone into the second zone, and continuing in the same general diverging directions through the second zone, third zone, and fourth zone. Directing the flow in diverging directions permits flow into and through a zone over more that just a single cross-sectional geometry of the zone or a single cross-section of the flow path transverse to the direction of flows. This configuration can be used to require a lower pressure for flowing the reaction stream so as to reduce the parasitic requirements of the reactor, and can also be used to increase throughput of the reactor.