Abstract:
Discussed is a display device, including a semiconductor light emitting device and a substrate having a receiving groove in which the semiconductor light emitting device is accommodated, wherein the semiconductor light emitting device includes a first conductive semiconductor layer, a second conductive semiconductor layer disposed on an upper portion of the first conductive semiconductor layer, a first conductive electrode disposed on the first conductive semiconductor layer and a second conductive electrode disposed on the second conductive semiconductor layer, and spaced apart from the first conductive electrode along a horizontal direction of the semiconductor light emitting device, wherein the first conductive semiconductor layer has a symmetrical shape with respect to at least one direction of the semiconductor light emitting device so that the first conductive electrode and the second conductive electrode are arranged at preset positions when the semiconductor light emitting device is accommodated into the receiving groove.
Abstract:
The present disclosure relates a display device including a semiconductor light emitting device, and a substrate having a receiving groove in which the semiconductor light emitting device is accommodated, wherein the semiconductor light emitting device includes a first conductive semiconductor layer, a second conductive semiconductor layer disposed at an upper portion of the first conductive semiconductor layer, a first conductive electrode disposed on the first conductive semiconductor layer, and a second conductive electrode disposed on the second conductive semiconductor layer, and spaced apart from the first conductive electrode along a horizontal direction, wherein when the semiconductor light emitting device is assembled into the receiving groove, the first conductive semiconductor layer has an asymmetrical shape with respect to at least one direction so that the first conductive electrode and the second conductive electrode are arranged at preset positions.
Abstract:
A light conversion film including a first barrier film, a light conversion layer disposed on the first barrier film, the light conversion layer including a matrix resin and red quantum dots that are dispersed into the matrix resin, and a second barrier film disposed on the light conversion layer. The light conversion film satisfies following Equation (1): 5≦(weight of quantum dot within light conversion layer/total weight of light conversion layer)×100×t≦50, where, t is a thickness of the light conversion layer.
Abstract:
A display device includes a semiconductor light emitting device disposed on a substrate and having a first conductive electrode disposed on a first upper portion of the semiconductor light emitting device and a second conductive electrode disposed on a second upper portion of the semiconductor light emitting device, a passivation layer disposed on the semiconductor light emitting device, a first electrode electrically connected to the first conductive electrode, and a second electrode electrically connected to the second conductive electrode. A part of the second electrode overlaps with a part of the first conductive electrode with the passivation layer interposed therebetween.
Abstract:
A semiconductor light emitting element according to an embodiment of the present disclosure includes: a n-type semiconductor layer; a p-type semiconductor layer formed in a first region on the n-type semiconductor layer; a p-type electrode formed on the p-type semiconductor layer; a n-type electrode formed in a second region different from the first region on the n-type semiconductor layer; and a magnetic layer formed under the n-type semiconductor layer.
Abstract:
An optical member, backlight unit and display device are provided. The optical member includes: a reflective substrate including a base member, a reflective layer disposed on the base member, and a plurality of refractive layers disposed on the reflective layer; an optical conversion layer disposed on the reflective substrate; and a barrier substrate disposed on the optical conversion layer.
Abstract:
The embodiment relates to a quantum dot-polymer composite and a method for producing the same, wherein the quantum dot-polymer composite includes: a first phase made of a matrix resin; a second phase dispersed and distributed in the first phase, comprising a quantum dot, and having a spherical shape; and a micro scattering agent distributed in an interface between the first phase and the second phase along a surface of the second phase.
Abstract:
A backlight unit including a light source formed to provide primary light; a quantum dot phosphor excited by the primary light provided from the light source to emit secondary light having a wavelength different from a wavelength of the primary light and disposed to be spaced apart from the light source; an optical agent absorbing light having a specific wavelength from the primary light provided by the light source and the secondary light emitted from the quantum dot phosphor; and a matrix configured to support the quantum dot phosphor and the optical agent. Further, the quantum dot phosphor and the optical agent are randomly mixed in the matrix; and the quantum dot phosphor, the optical agent, and the matrix form a composite.
Abstract:
A backlight unit including a plurality of light sources configured to emit primary light, and a quantum dot composite. The quantum dot composite includes quantum dot phosphors excited by primary light supplied from the plurality of light sources so as to emit secondary light having a different wavelength than the primary light, and scattering particles that are configured to scatter the primary light. The scattering particles include first scattering particles, and second scattering particles different from the first scattering particles in size and composed of particles each having a diameter in the range of 5 to 50 nm.
Abstract:
A semiconductor light emitting element can include an n-type semiconductor layer, a p-type semiconductor layer in a first region on the n-type semiconductor layer, a p-type electrode on the p-type semiconductor layer, an n-type electrode in a second region different from the first region on the n-type semiconductor layer, a magnetic layer under the n-type semiconductor layer, a reflective layer between the n-type semiconductor layer and the magnetic layer, and a passivation layer surrounding the n-type semiconductor layer, the p-type semiconductor layer, the p-type electrode, the n-type electrode, and the magnetic layer.