Abstract:
A method performed by a wireless device, includes processing information bits used for data transmission in a cell, and generating a reference signal sequence based on a cell identifier of the cell. Further, a device includes a data processor configured to process information bits used for data transmission in a cell, and a reference signal generator configured to generate a reference signal sequence based on a cell identifier of the cell.
Abstract:
A method is provided for transmitting a signal by a station in a wireless local area network (WLAN). The station obtains a transmission opportunity (TXOP) indicating a time duration used for transmission of a plurality of data units. The station transmits, during the TXOP, an initial data unit of the plurality of data units. The initial data unit comprises a control field indicating a transmit bandwidth of the initial data unit. The station selects a transmit bandwidth of a non-initial data unit of the plurality of data units to be narrower than the transmit bandwidth of the initial data unit. The station transmits, during the TXOP, the non-initial data unit. The non-initial data unit comprises a control field indicating the transmit bandwidth of the non-initial data unit.
Abstract:
A method of transmitting a data frame by a transmitter in a WLAN system is provided. The method includes generating a data block including at least one data units respectively transmitted through at least one or more spatial streams to at least one receiver, transmitting first control information to the at least one receiver, transmitting second control information to each receiver, and transmitting the data block to the at least one receiver. The first control information includes a length indicator for the data block, a MIMO indicator indicating whether the data block is for SU-MIMO or MU-MIMO, and a spatial stream indication field including information about the number of the spatial streams. The second control information includes a FEC coding field indicating an encoding scheme applied to the data unit and an MCS field indicating an MCS applied to the data unit.
Abstract:
A method and a wireless apparatus for power saving in a wireless local area network are discussed. The method according to an embodiment includes receiving a frame including a signal field from a transmitting device. The signal field includes a number indicator and a power saving indicator. The number indicator indicates a number of spatial streams for a corresponding recipient, and the power saving indicator indicates that the transmitting device allows the wireless device to enter a doze state during a transmission opportunity (TXOP). The method further includes entering the doze state until the end of the TXOP if the power saving indicator indicates an allowance of entering the doze state during the TXOP, and the number of spatial streams to be received by the wireless device is equal to zero.
Abstract:
A method and a radio apparatus for signal transmission in a Wireless Local Area Network (WLAN) system are discussed. The method according to an embodiment includes generating first and second very high throughput (VHT) fields including first and second control information, respectively; and transmitting a physical layer protocol data unit (PPDU) including the first and second VHT fields to at least one target station. The first VHT field includes an indicator indicating whether the PPDU is to be transmitted by using a single-user multiple input multiple output (SU-MIMO) scheme or a multi-user multiple input multiple output (MU-MIMO) scheme.
Abstract:
A method for channel-coding information bits using a code generation matrix including 32 rows and A columns corresponding to length of the information bits includes, channel-coding the information bits having “A” length using basis sequences having 32-bit length corresponding to columns of the code generation matrix, and outputting the channel-coded result as an output sequence. If “A” is higher than 10, the code generation matrix is generated when (A-10) additional basis sequences were added as column-directional sequences to a first or second matrix. The first matrix is a TFCI code generation matrix composed of 32 rows and 10 columns used for TFCI coding. The second matrix is made when at least one of an inter-row location or an inter-column location of the first matrix was changed. The additional basis sequences satisfy a value 10 of a minimum Hamming distance.
Abstract:
A method of link adaptation performed by an access point supporting multi user (MU) multiple input multiple output (MIMO) in wireless local area network system is provided. The method includes transmitting, to a first station, a physical layer convergence procedure (PLCP) protocol data unit (PPDU) containing a modulation and coding scheme (MCS) request (MRQ) and receiving, from the first station, a MCS feedback (MFB) in response to the MRQ, wherein the first station is one of destination stations of MU-MIMO transmission performed by the access point, and the MFB includes a recommended MCS value computed, by the first station, on the assumption that the first station, as a member of the destination stations, receives data transmitted over at least one spatial stream allocated to the first station in MU-MIMO transmission.
Abstract:
A method and apparatus for transmitting a downlink reference signal in a wireless communication system supporting multiple antennas are discussed. A method for transmitting Channel State Information-Reference Signals (CSI-RSs) for eight or less antenna ports includes selecting one of a plurality of CSI-RS Resource Element (RE) groups defined on a data region of a downlink subframe and mapping CSI-RSs for the eight or less antenna ports to the selected CSI-RS RE group, and transmitting the downlink subframe in which the CSI-RSs for the eight or less antenna ports are mapped.
Abstract:
A method of transmitting a data frame by a station in a wireless local area network (WLAN), A station obtains a transmission opportunity (TXOP) for a bandwidth. The TXOP indicates an interval of time during which the station has a right to initiate frame exchange sequences onto a wireless medium. The station selects a transmit bandwidth parameter of a non-initial data unit of a plurality of data units from available bandwidth parameters. The available bandwidth parameters include a first available bandwidth parameter which is same as a transmit bandwidth parameter of a preceding data unit of the plurality of data units and a second available bandwidth parameter which is narrower than a transmit bandwidth parameter of the preceding data unit. The station transmits, during the TXOP, the non-initial data unit according to the transmit bandwidth parameter of the non-initial data unit.
Abstract:
A method for transmitting a reference signal for channel measurement (CSI-RS) to a user equipment; a base station therefore; a method for receiving a CSI-RS; and the user equipment therefore are discussed. The method for transmitting a CSI-RS according to one embodiment includes transmitting CSI-RS pattern information for indicating a pattern of time-frequency resource to be nulled, hereinafter referred to as null CSI-RS pattern, and CSI-RS subframe information for indicating in which subframe the null CSI-RS pattern occurs; and nulling a time-frequency resource corresponding to the null CSI-RS pattern in a subframe corresponding to the CSI-RS subframe information, hereinafter referred to as null CSI-RS subframe, based on the CSI-RS pattern information and the CSI-RS subframe information. The CSI-RS subframe information includes information indicating a periodic interval with which the null CSI-RS subframe occurs. The periodic interval corresponds to a plurality of subframes.